Strain provides an additional mechanism in tuning the thermal/electrical properties of nanostructures and therefore has triggered lots of interest in recent years. However, experimental research about the strain effect on the thermal conductivity of nanowires is still limited, especially in the low-temperature range, which is important in understanding the physics of strain-induced regulation in thermal conductivity. Here, we present thermal transport measurements of bent silicon carbide nanowires at temperatures ranging from 20 to 300 K. Reduction in thermal conductivity compared to their straight counterparts is observed. More specifically, the relative change is up to 55% at 20 K and descends with temperature, which is due to the inhomogeneous strain-induced phonon scattering. This study will deepen the understanding of thermal properties in nanostructures with strain.

1.
A. A.
Balandin
,
Nat. Mater.
10
(
8
),
569
(
2011
).
2.
M. F. L.
De Volder
,
S. H.
Tawfick
,
R. H.
Baughman
, and
A. J.
Hart
,
Science
339
(
6119
),
535
(
2013
).
3.
S.
Manzeli
,
D.
Ovchinnikov
,
D.
Pasquier
,
O. V.
Yazyev
, and
A.
Kis
,
Nat. Rev. Mater.
2
(
8
),
17033
(
2017
).
4.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
(
2
),
793
(
2003
).
5.
D. G.
Cahill
,
P. V.
Braun
,
G.
Chen
,
D. R.
Clarke
,
S.
Fan
,
K. E.
Goodson
,
P.
Keblinski
,
W. P.
King
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
S. R.
Phillpot
,
E.
Pop
, and
L.
Shi
,
Appl. Phys. Rev.
1
(
1
),
011305
(
2014
).
6.
T.
Xing
,
C. X.
Zhu
,
Q. F.
Song
,
H.
Huang
,
J.
Xiao
,
D. D.
Ren
,
M. J.
Shi
,
P. F.
Qiu
,
X.
Shi
,
F. F.
Xu
, and
L. D.
Chen
,
Adv. Mater.
33
(
17
),
2008773
(
2021
).
7.
X.
Wu
,
Q.
Tao
,
D.
Li
,
Q.
Wang
,
X.
Zhang
,
H.
Jin
,
J.
Li
,
S.
Wang
, and
X.
Xu
,
Nano Res.
14
(
12
),
4725
(
2021
).
8.
J.
Guo
,
Y.
Huang
,
X.
Wu
,
Q.
Wang
,
X.
Zhou
,
X.
Xu
, and
B.
Li
,
Phys. Status Solidi RRL
13
(
3
),
1800529
(
2019
).
9.
F.
Ma
,
H. B.
Zheng
,
Y. J.
Sun
,
D.
Yang
,
K. W.
Xu
, and
P. K.
Chu
,
Appl. Phys. Lett.
101
(
11
),
111904
(
2012
).
10.
X.
Li
,
K.
Maute
,
M. L.
Dunn
, and
R.
Yang
,
Phys. Rev. B
81
(
24
),
245318
(
2010
).
11.
J. F.
Meng
,
N. V.
Chandra Shekar
,
J. V.
Badding
,
D.-Y.
Chung
, and
M. G.
Kanatzidis
,
J. Appl. Phys.
90
(
6
),
2836
(
2001
).
12.
D. A.
Polvani
,
J. F.
Meng
,
N. V.
Chandra Shekar
,
J.
Sharp
, and
J. V.
Badding
,
Chem. Mater.
13
(
6
),
2068
(
2001
).
13.
F.
He
,
Y.
Liu
,
Z.
Tian
,
C.
Zhang
,
F.
Ye
,
L.
Cheng
, and
L.
Zhang
,
Mater. Sci. Eng., A
734
,
374
(
2018
).
14.
T.
Han
,
R.
Luo
,
G.
Cui
, and
L.
Wang
,
J. Eur. Ceram. Soc.
39
(
5
),
1743
(
2019
).
15.
B. M.
Curtin
,
E. W.
Fang
, and
J. E.
Bowers
,
J. Electron. Mater.
41
(
5
),
887
(
2012
).
16.
C.
Shao
,
X.
Yu
,
N.
Yang
,
Y.
Yue
, and
H.
Bao
,
Nanoscale Microscale Thermophys. Eng.
21
(
4
),
201
(
2017
).
17.
Y.
Gao
and
Z. L.
Wang
,
Nano Lett.
7
(
8
),
2499
(
2007
).
18.
J.
Chen
,
G.
Conache
,
M.-E.
Pistol
,
S. M.
Gray
,
M. T.
Borgström
,
H.
Xu
,
H. Q.
Xu
,
L.
Samuelson
, and
U.
Håkanson
,
Nano Lett.
10
(
4
),
1280
(
2010
).
19.
X.
Han
,
L.
Kou
,
X.
Lang
,
J.
Xia
,
N.
Wang
,
R.
Qin
,
J.
Lu
,
J.
Xu
,
Z.
Liao
,
X.
Zhang
,
X.
Shan
,
X.
Song
,
J.
Gao
,
W.
Guo
, and
D.
Yu
,
Adv. Mater.
21
(
48
),
4937
(
2009
).
20.
D.
Rossouw
and
G. A.
Botton
,
Phys. Rev. Lett.
110
(
6
),
066801
(
2013
).
21.
X.
Liu
,
H.
Zhou
,
G.
Zhang
, and
Y.-W.
Zhang
,
J. Appl. Phys.
125
(
8
),
082505
(
2018
).
22.
J.
Huang
,
Y.
Zhang
,
A.
Fan
,
Y.
Li
,
H.
Wang
,
W.
Ma
, and
X.
Zhang
,
ACS Appl. Mater. Interfaces
15
(
33
),
39689
(
2023
).
23.
V.
Lee
,
R.
Chen
, and
C.-W.
Chang
,
Phys. Rev. B
87
(
3
),
035406
(
2013
).
24.
S.
Bhowmick
and
V. B.
Shenoy
,
J. Chem. Phys.
125
(
16
),
164513
(
2006
).
25.
L.-C.
Liu
,
M.-J.
Huang
,
R.
Yang
,
M.-S.
Jeng
, and
C.-C.
Yang
,
J. Appl. Phys.
105
(
10
),
104313
(
2009
).
26.
M.
Maldovan
,
J. Appl. Phys.
110
(
11
),
114310
(
2011
).
27.
S.-D.
Guo
,
J.
Dong
, and
J.-T.
Liu
,
Phys. Chem. Chem. Phys.
20
(
34
),
22038
(
2018
).
28.
L.
Shi
,
D.
Li
,
C.
Yu
,
W.
Jang
,
D.
Kim
,
Z.
Yao
,
P.
Kim
, and
A.
Majumdar
,
J. Heat Transfer
125
(
5
),
881
(
2003
).
29.
X.
Xu
,
L. F. C.
Pereira
,
Y.
Wang
,
J.
Wu
,
K.
Zhang
,
X.
Zhao
,
S.
Bae
,
C.
Tinh Bui
,
R.
Xie
,
J. T. L.
Thong
,
B. H.
Hong
,
K. P.
Loh
,
D.
Donadio
,
B.
Li
, and
B.
Özyilmaz
,
Nat. Commun.
5
(
1
),
3689
(
2014
).
30.
L.
Dong
,
B.
Liu
,
Y.
Wang
, and
X.
Xu
,
Chin. Phys. Lett.
39
(
12
),
127201
(
2022
).
31.
J.
Chen
,
X.
Xu
,
J.
Zhou
, and
B.
Li
,
Rev. Mod. Phys.
94
(
2
),
025002
(
2022
).
32.
L. L.
Snead
,
T.
Nozawa
,
Y.
Katoh
,
T.-S.
Byun
,
S.
Kondo
, and
D. A.
Petti
,
J. Nucl. Mater.
371
(
1
),
329
(
2007
).
33.
L. A.
Valentín
,
J.
Betancourt
,
L. F.
Fonseca
,
M. T.
Pettes
,
L.
Shi
,
M.
Soszyński
, and
A.
Huczko
,
J. Appl. Phys.
114
(
18
),
184301
(
2013
).
34.
K.
Takahashi
,
Y.
Ito
,
T.
Ikuta
,
T.
Nishiyama
,
M.
Fujii
,
X.
Zhang
, and
A.
Huczko
,
High Temp. - High Pressures
37
(
2
),
119
(
2008
), available at https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=34195141&site=ehost-live.
35.
K.-M.
Lee
,
S.-K.
Lee
, and
T.-Y.
Choi
,
Appl. Phys. A
106
(
4
),
955
(
2012
).
36.
Q.
Wang
,
Y.
Chen
,
A.
Aiyiti
,
M.
Zheng
,
N.
Li
, and
X.
Xu
,
Chin. Phys. B
29
(
8
),
084402
(
2020
).
37.
S.
Wang
,
Y.
Wu
,
L.
Lin
,
Y.
He
, and
H.
Huang
,
Small
11
(
14
),
1672
(
2015
).
38.
E. W.
Wong
,
P. E.
Sheehan
, and
C. M.
Lieber
,
Science
277
(
5334
),
1971
(
1997
).
39.
J.
Ma
,
Y.
Ni
,
S.
Volz
, and
T.
Dumitrică
,
Phys. Rev. Appl.
3
(
2
),
024014
(
2015
).
40.
D.-S.
Tang
,
G.-Z.
Qin
,
M.
Hu
, and
B.-Y.
Cao
,
J. Appl. Phys.
127
(
3
),
035102
(
2020
).
41.
K. D.
Parrish
,
A.
Jain
,
J. M.
Larkin
,
W. A.
Saidi
, and
A. J. H.
McGaughey
,
Phys. Rev. B
90
(
23
),
235201
(
2014
).
42.
Z.
Huang
,
Z.
Tang
,
J.
Yu
, and
S.
Bai
,
J. Appl. Phys.
109
(
10
),
104316
(
2011
).
43.
A.
Mobaraki
,
C.
Sevik
,
H.
Yapicioglu
,
D.
Çakır
, and
O.
Gülseren
,
Phys. Rev. B
100
(
3
),
035402
(
2019
).
44.
L.
Yang
,
S.
Yue
,
Y.
Tao
,
S.
Qiao
,
H.
Li
,
Z.
Dai
,
B.
Song
,
Y.
Chen
,
J.
Du
,
D.
Li
, and
P.
Gao
,
Nature
629
,
1021
(
2024
).
45.
Y.
Ni
,
S.
Xiong
,
S.
Volz
, and
T.
Dumitricǎ
,
Phys. Rev. Lett.
113
(
12
),
124301
(
2014
).
46.
K.
Ohashi
,
J. Phys. Soc. Jpn.
24
(
3
),
437
(
1968
).
47.
G. A.
Slack
and
S. F.
Bartram
,
J. Appl. Phys.
46
(
1
),
89
(
1975
).
48.
C.-L.
Tien
and
T.-W.
Lin
,
Appl. Opt.
51
(
30
),
7229
(
2012
).
49.
A. K.
Collins
,
M. A.
Pickering
, and
R. L.
Taylor
,
J. Appl. Phys.
68
(
12
),
6510
(
1990
).
50.
M. A.
Pickering
,
R. L.
Taylor
,
J. T.
Keeley
, and
G. A.
Graves
,
Nucl. Instrum. Methods Phys. Res., Sect. A
291
(
1
),
95
(
1990
).
52.
R. J.
Price
,
J. Nucl. Mater.
46
(
3
),
268
(
1973
).
You do not currently have access to this content.