We have fabricated smooth-surfaced amorphous In2O3:Sn (a-ITO) films at a high temperature of 550 °C, far above the typical crystallization threshold of 150 °C for ITO films. This achievement has been made possible by intentionally introducing N2 into the sputtering atmosphere, which maintains a low N atom incorporation of only a few atomic percent within the films. Positioned within ZONE-T of the Thornton diagram (higher-temperature region characterized by high film density), our method allows the preparation of films with superior film density about 6.96 g/cm3, substantially exceeding the density of 6.58 g/cm3 for conventional a-ITO films fabricated under ZONE-1 (low-temperature region) and approaching the bulk crystal density of In2O3 at 7.12 g/cm3. The films also feature a high carrier density of 5 × 1020 cm−3 and a remarkably low resistivity of 3.5 × 10−4 Ω cm, comparable to those of polycrystalline films. The analysis via vacuum-ultraviolet absorption spectroscopy on N and O atom densities in the plasma suggests that amorphization is primarily caused not by N atoms incorporated in the films but by those temporally adsorbed on the film surface, inhibiting crystal nucleation before eventually desorbing. Our findings will pave the way not only for broader applications of a-ITO films but also for the design of other amorphous materials at temperatures beyond their crystallization points.

1.
T.
Minami
, “
Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes
,”
Thin Solid Films
516
,
5822
5828
(
2008
).
2.
H. K.
Kim
,
S.
Lee
, and
K. S.
Yun
, “
Capacitive tactile sensor array for touch screen application
,”
Sens. Actuators, A
165
,
2
7
(
2011
).
3.
Y. H.
Shin
,
C. K.
Cho
, and
H. K.
Kim
, “
Resistance and transparency tunable Ag-inserted transparent InZnO films for capacitive touch screen panels
,”
Thin Solid Films
548
,
641
645
(
2013
).
4.
N. G.
Pramod
and
S. N.
Pandey
, “
Effect of Li doping on the structural, optical and formaldehyde sensing properties of In2O3 thin films
,”
Ceram. Int.
41
,
527
532
(
2015
).
5.
A. S. A. C.
Diniz
, “
The effects of various annealing regimes on the microstructure and physical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation for solar energy applications
,”
Renewable Energy
36
,
1153
1165
(
2011
).
6.
L.
Zhao
,
Z.
Zhou
,
H.
Peng
, and
R.
Cui
, “
Indium tin oxide thin films by bias magnetron rf sputtering for heterojunction solar cells application
,”
Appl. Surf. Sci.
252
,
385
392
(
2005
).
7.
C. H.
Chung
,
Y. W.
Ko
,
Y. H.
Kim
,
C. Y.
Sohn
,
H. Y.
Chu
,
S. H. K.
Park
, and
J. H.
Lee
, “
Radio frequency magnetron sputter-deposited indium tin oxide for use as a cathode in transparent organic light-emitting diode
,”
Thin Solid Films
491
,
294
297
(
2005
).
8.
N.
Huby
,
L.
Hirsch
,
G.
Wantz
,
L.
Vignau
,
A. S.
Barrìre
,
J. P.
Parneix
,
L.
Aubouy
, and
P.
Gerbier
, “
Injection and transport processes in organic light emitting diodes based on a silole derivative
,”
J. Appl. Phys.
99
,
084907
(
2006
).
9.
J.
Zheng
,
W.
Duan
,
Y.
Guo
,
Z. C.
Zhao
,
H.
Yi
,
F. J.
Ma
,
L.
Granados Caro
,
C.
Yi
,
J.
Bing
,
S.
Tang
,
J.
Qu
,
K. C.
Fong
,
X.
Cui
,
Y.
Zhu
,
L.
Yang
,
A.
Lambertz
,
M.
Arafat Mahmud
,
H.
Chen
,
C.
Liao
,
G.
Wang
,
M.
Jankovec
,
C.
Xu
,
A.
Uddin
,
J. M.
Cairney
,
S.
Bremner
,
S.
Huang
,
K.
Ding
,
D. R.
McKenzie
, and
A. W. Y.
Ho-Baillie
, “
Efficient monolithic perovskite-Si tandem solar cells enabled by an ultra-thin indium tin oxide interlayer
,”
Energy Environ. Sci.
16
,
1223
1233
(
2023
).
10.
Ö.
Kabaklı
,
J.
Kox
,
L.
Tutsch
,
M.
Heydarian
,
A. J.
Bett
,
S.
Lange
,
O.
Fischer
,
C.
Hagendorf
,
M.
Bivour
,
M.
Hermle
,
P. S. C.
Schulze
, and
J. C.
Goldschmidt
, “
Minimizing electro-optical losses of ITO layers for monolithic perovskite silicon tandem solar cells
,”
Sol. Energy Mater. Sol. Cells
254
,
112246
(
2023
).
11.
X.
Luo
,
H.
Luo
,
H.
Li
,
R.
Xia
,
X.
Zheng
,
Z.
Huang
,
Z.
Liu
,
H.
Gao
,
X.
Zhang
,
S.
Li
,
Z.
Feng
,
Y.
Chen
, and
H.
Tan
, “
Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon
,”
Adv. Mater.
35
,
2207883
(
2023
).
12.
E.
Aydin
,
E.
Ugur
,
B. K.
Yildirim
,
T. G.
Allen
,
P.
Dally
,
A.
Razzaq
,
F.
Cao
,
L.
Xu
,
B.
Vishal
,
A.
Yazmaciyan
,
A. A.
Said
,
S.
Zhumagali
,
R.
Azmi
,
M.
Babics
,
A.
Fell
,
C.
Xiao
, and
S.
De Wolf
, “
Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells
,”
Nature
623
,
732
738
(
2023
).
13.
Y.
Shigesato
,
R.
Koshi-Ishi
,
T.
Kawashima
, and
J.
Ohsako
, “
Early stages of ITO deposition on glass or polymer substrates
,”
Vacuum
59
,
614
621
(
2000
).
14.
J. A.
Thornton
, “
Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings
,”
J. Vac. Sci. Technol.
11
,
666
670
(
1974
).
15.
N.
Itagaki
,
K.
Kuwahara
,
K.
Nakahara
,
D.
Yamashita
,
G.
Uchida
,
K.
Koga
, and
M.
Shiratani
, “
Highly conducting and very thin ZnO: AI films with ZnO buffer layer fabricated by solid phase crystallization from amorphous phase
,”
Appl. Phys. Express
4
,
011101
(
2011
).
16.
I.
Suhariadi
,
N.
Itagaki
, and
M.
Shiratani
, “
Improved nanoscale Al-doped ZnO with a ZnO buffer layer fabricated by nitrogen-mediated crystallization for flexible optoelectronic devices
,”
ACS Appl. Nano Mater.
3
,
2480
2490
(
2020
).
17.
N.
Itagaki
,
Y.
Nakamura
,
R.
Narishige
,
K.
Takeda
,
K.
Kamataki
,
K.
Koga
,
M.
Hori
, and
M.
Shiratani
, “
Growth of single crystalline films on lattice-mismatched substrates through 3D to 2D mode transition
,”
Sci. Rep.
10
,
4669
(
2020
).
18.
Y.
Nakamura
,
N.
Yamashita
,
K.
Kamataki
,
T.
Okumura
,
K.
Koga
,
M.
Shiratani
, and
N.
Itagaki
, “
Growth of single-crystalline ZnO films on 18%-lattice-mismatched sapphire substrates using buffer layers with three-dimensional islands
,”
Cryst. Growth Des.
22
,
3770
3777
(
2022
).
19.
K.
Kamataki
,
H.
Ohtomo
,
N.
Itagaki
,
C. F.
Lesly
,
D.
Yamashita
,
T.
Okumura
,
N.
Yamashita
,
K.
Koga
, and
M.
Shiratani
, “
Prediction by a hybrid machine learning model for high-mobility amorphous In2O3: Sn films fabricated by RF plasma sputtering deposition using a nitrogen-mediated amorphization method
,”
J. Appl. Phys.
134
,
163301
(
2023
).
20.
N.
Itagaki
,
S.
Iwata
,
K.
Muta
,
A.
Yonesu
,
S.
Kawakami
,
N.
Ishii
, and
Y.
Kawai
, “
Electron-temperature dependence of nitrogen dissociation in 915 MHz ECR plasma
,”
Thin Solid Films
435
,
259
263
(
2003
).
21.
S.
Takashima
,
M.
Hori
,
T.
Goto
,
A.
Kono
,
M.
Ito
, and
K.
Yoneda
, “
Vacuum ultraviolet absorption spectroscopy employing a microdiacharge hollow-cathode lamp for absolute density measurements of hydrogen atoms in reactive plasmas
,”
Appl. Phys. Lett.
75
,
3929
3931
(
1999
).
22.
S.
Tada
,
S.
Takashima
,
M.
Ito
,
M.
Hori
,
T.
Goto
, and
Y.
Sakamoto
, “
Measurement and control of absolute nitrogen atom density in an electron-beam-excited plasma using vacuum ultraviolet absorption spectroscopy
,”
J. Appl. Phys.
88
,
1756
1759
(
2000
).
23.
B. R.
Koo
and
H. J.
Ahn
, “
Effect of hybrid nanoinks on solution-based Sn-doped In2O3 films under low-temperature microwave annealing
,”
Ceram. Int.
42
,
509
517
(
2016
).
24.
J.
Kim
,
S.
Shrestha
,
M.
Souri
,
J. G.
Connell
,
S.
Park
, and
A.
Seo
, “
High-temperature optical properties of indium tin oxide thin-films
,”
Sci. Rep.
10
,
12486
(
2020
).
25.
D. B.
Buchholz
,
Q.
Ma
,
D.
Alducin
,
A.
Ponce
,
M.
Jose-Yacaman
,
R.
Khanal
,
J. E.
Medvedeva
, and
R. P. H.
Chang
, “
The structure and properties of amorphous indium oxide
,”
Chem. Mater.
26
,
5401
5411
(
2014
).
26.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
, “
Electronic structure of the amorphous oxide semiconductor a-lnGaZnO4−x: Tauc-Lorentz optical model and origins of subgap states
,”
Phys. Status Solidi A
206
,
860
867
(
2009
).
27.
A.
Bikowski
,
T.
Welzel
, and
K.
Ellmer
, “
The correlation between the radial distribution of high-energetic ions and the structural as well as electrical properties of magnetron sputtered ZnO:Al films
,”
J. Appl. Phys.
114
,
223716
(
2013
).
28.
M.
Kon
,
P. K.
Song
,
A.
Mitsui
, and
Y.
Shigesato
, “
Crystallinity of gallium-doped zinc oxide films deposited by DC magnetron sputtering using Ar, Ne or Kr gas
,”
Jpn. J. Appl. Phys., Part 1
41
,
6174
6179
(
2002
).
29.
P. K.
Song
,
Y.
Shigesato
,
I.
Yasui
,
C. W.
Ow-Yang
, and
D. C.
Paine
, “
Study on crystallinity of tin-doped indium oxide films deposited by DC magnetron sputtering
,”
Jpn. J. Appl. Phys., Part 1
37
,
1870
(
1998
).
30.
P. K.
Song
,
Y.
Shigesato
,
M.
Kamei
, and
I.
Yasui
, “
Electrical and structural properties of tin-doped indium oxide films deposited by DC sputtering at room temperature
,”
Jpn. J. Appl. Phys., Part 1
38
,
2921
2927
(
1999
).
31.
A.
Antony
,
M.
Nisha
,
R.
Manoj
, and
M. K.
Jayaraj
, “
Influence of target to substrate spacing on the properties of ITO thin films
,”
Appl. Surf. Sci.
225
,
294
301
(
2004
).
32.
G.
Mei-Zhen
,
R.
Job
,
X.
De-Sheng
, and
W. R.
Fahrner
, “
Thickness dependence of resistivity and optical reflectance of ITO films
,”
Chin. Phys. Lett.
25
,
1380
(
2008
).
33.
A.
Thøgersen
,
M.
Rein
,
E.
Monakhov
,
J.
Mayandi
, and
S.
Diplas
, “
Elemental distribution and oxygen deficiency of magnetron sputtered indium tin oxide films
,”
J. Appl. Phys.
109
,
113532
(
2011
).
You do not currently have access to this content.