Power Schottky barrier diodes (SBDs) face an inherent trade-off between forward conduction loss and reverse blocking capability. This limitation becomes more severe for ultra-wide bandgap (UWBG) SBDs due to the large junction field. A high Schottky barrier is usually required to suppress the reverse leakage current at the price of an increased forward voltage drop (VF). This work demonstrates a Ga2O3 junction barrier Schottky (JBS) diode that employs the embedded p-type NiO grids to move the peak electric field away from the Schottky junction, thereby allowing for the use of an ultra-low barrier TiN Schottky contact. This JBS diode concurrently realizes a low VF of 0.91 V (at forward current of 100 A/cm2) and a high breakdown voltage over 1 kV, with the VF being the lowest in all the reported vertical UWBG power diodes. Based on the device characteristics measured up to 200 °C, we further analyze the power loss of this JBS diode across a wide range of operational duty cycles and temperatures, which is found to outperform the TiN/Ga2O3 SBDs or NiO/Ga2O3 PN diodes. These findings underscore the potential of low-barrier UWBG JBS diodes for high-frequency, high-temperature power electronics applications.

1.
Y.
Zhang
,
F.
Udrea
, and
H.
Wang
, “
Multidimensional device architectures for efficient power electronics
,”
Nat. Electron.
5
,
723
734
(
2022
).
2.
F.
Zhou
,
H.
Gong
,
M.
Xiao
,
Y.
Ma
,
Z.
Wang
,
X.
Yu
,
L.
Li
,
L.
Fu
,
H. H.
Tan
,
Y.
Yang
,
F. F.
Ren
,
S.
Gu
,
Y.
Zheng
,
H.
Lu
,
R.
Zhang
,
Y.
Zhang
, and
J.
Ye
, “
An avalanche-and-surge robust ultrawide-bandgap heterojunction for power electronics
,”
Nat. Commun.
14
,
4459
(
2023
).
3.
B. J.
Baliga
,
Fundamentals of Power Semiconductor Devices
(
Springer
,
Raleigh, NC
,
2019
).
4.
W.
Li
,
D.
Saraswat
,
Y.
Long
,
K.
Nomoto
,
D.
Jena
, and
H. G.
Xing
, “
Near-ideal reverse leakage current and practical maximum electric field in β-Ga2O3 Schottky barrier diodes
,”
Appl. Phys. Lett.
116
,
192101
(
2020
).
5.
B.
Wang
,
M.
Xiao
,
J.
Spencer
,
Y.
Qin
,
K.
Sasaki
,
M. J.
Tadjer
, and
Y.
Zhang
, “
2.5 kV vertical Ga2O3 Schottky rectifier with graded junction termination extension
,”
IEEE Electron Device Lett.
44
,
221
224
(
2023
).
6.
Y.
Qin
,
Z.
Wang
,
K.
Sasaki
,
J.
Ye
, and
Y.
Zhang
, “
Recent progress of Ga2O3 power technology: Large-area devices, packaging and applications
,”
Jpn. J. Appl. Phys., Part 1
62
,
SF0801
(
2023
).
7.
Y.
Qin
,
M.
Xiao
,
M.
Porter
,
Y.
Ma
,
J.
Spencer
,
Z.
Du
,
A. G.
Jacobs
,
K.
Sasaki
,
H.
Wang
,
M.
Tadjer
, and
Y.
Zhang
, “
10-kV Ga2O3 charge-balance Schottky rectifier operational at 200 °C
,”
IEEE Electron Device Lett.
44
,
1268
1271
(
2023
).
8.
J. A.
Spencer
,
A. L.
Mock
,
A. G.
Jacobs
,
M.
Schubert
,
Y.
Zhang
, and
M. J.
Tadjer
, “
A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3
,”
Appl. Phys. Rev.
9
,
011315
(
2022
).
9.
S.
Roy
,
A.
Bhattacharyya
,
C.
Peterson
, and
S.
Krishnamoorthy
, “
2.1 kV (001)-β-Ga2O3 vertical Schottky barrier diode with high-k oxide field plate
,”
Appl. Phys. Lett.
122
,
152101
(
2023
).
10.
W.
Xiong
,
X.
Zhou
,
G.
Xu
,
Q.
He
,
G.
Jian
,
C.
Chen
,
Y.
Yu
,
W.
Hao
,
X.
Xiang
,
X.
Zhao
,
W.
Mu
,
Z.
Jia
,
X.
Tao
, and
S.
Long
, “
Double-barrier β-Ga2O3 Schottky barrier diode with low turn-on voltage and leakage current
,”
IEEE Electron Device Lett.
42
,
430
433
(
2021
).
11.
Q.
Liu
,
X.
Zhou
,
Q.
He
,
W.
Hao
,
X.
Zhao
,
M.
Hua
,
G.
Xu
, and
S.
Long
, “
Demonstration of β-Ga2O3 heterojunction gate field-effect rectifier
,”
IEEE Trans. Electron Devices
70
,
3762
3767
(
2023
).
12.
H.
Sheoran
,
V.
Kumar
, and
R.
Singh
, “
A comprehensive review on recent developments in Ohmic and Schottky contacts on Ga2O3 for device applications
,”
ACS Appl. Electron. Mater.
4
,
2589
2628
(
2022
).
13.
P.
Dong
,
J.
Zhang
,
Q.
Yan
,
Z.
Liu
,
P.
Ma
,
H.
Zhou
, and
Y.
Hao
, “
6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC
,”
IEEE Electron Device Lett.
43
,
765
768
(
2022
).
14.
H. H.
Gong
,
X. H.
Chen
,
Y.
Xu
,
F. F.
Ren
,
S. L.
Gu
, and
J. D.
Ye
, “
A 1.86-kV double-layered NiO/β-Ga2O3 vertical p–n heterojunction diode
,”
Appl. Phys. Lett.
117
,
022104
(
2020
).
15.
H.
Gong
,
X.
Chen
,
Y.
Xu
,
Y.
Chen
,
F.
Ren
,
B.
Liu
,
S.
Gu
,
R.
Zhang
, and
J.
Ye
, “
Band alignment and interface recombination in NiO/β-Ga2O3 type-II p-n heterojunctions
,”
IEEE Trans. Electron Devices
67
,
3341
3347
(
2020
).
16.
J.
Zhang
,
P.
Dong
,
K.
Dang
,
Y.
Zhang
,
Q.
Yan
,
H.
Xiang
,
J.
Su
,
Z.
Liu
,
M.
Si
,
J.
Gao
,
M.
Kong
,
H.
Zhou
, and
Y.
Hao
, “
Ultra-wide bandgap semiconductor Ga2O3 power diodes
,”
Nat. Commun.
13
,
3900
(
2022
).
17.
J.-S.
Li
,
H.-H.
Wan
,
C.-C.
Chiang
,
T. J.
Yoo
,
M.-H.
Yu
,
F.
Ren
,
H.
Kim
,
Y.-T.
Liao
, and
S. J.
Pearton
, “
Breakdown up to 13.5 kV in NiO/β-Ga2O3 Vertical Heterojunction Rectifiers
,”
ECS J. Solid State Sci. Technol.
13
,
035003
(
2024
).
18.
B. A.
Hull
,
J. J.
Sumakeris
,
M. J. O.
Loughlin
,
Q.
Zhang
,
J.
Richmond
,
A. R.
Powell
,
E. A.
Imhoff
,
K. D.
Hobart
,
A.
Rivera-Lopez
, and
A. R.
Hefner
, “
Performance and stability of large-area 4H-SiC 10-kV junction barrier Schottky rectifiers
,”
IEEE Trans. Electron Devices
55
,
1864
1870
(
2008
).
19.
Y.
Zhang
,
Z.
Liu
,
M. J.
Tadjer
,
M.
Sun
,
D.
Piedra
,
C.
Hatem
,
T. J.
Anderson
,
L. E.
Luna
,
A.
Nath
,
A. D.
Koehler
,
H.
Okumura
,
J.
Hu
,
X.
Zhang
,
X.
Gao
,
B. N.
Feigelson
,
K. D.
Hobart
, and
T.
Palacios
, “
Vertical GaN junction barrier Schottky rectifiers by selective ion implantation
,”
IEEE Electron Device Lett.
38
,
1097
1100
(
2017
).
20.
H. H.
Gong
,
X. X.
Yu
,
Y.
Xu
,
X. H.
Chen
,
Y.
Kuang
,
Y. J.
Lv
,
Y.
Yang
,
F. F.
Ren
,
Z. H.
Feng
,
S. L.
Gu
,
Y. D.
Zheng
,
R.
Zhang
, and
J. D.
Ye
, “
β-Ga2O3 vertical heterojunction barrier Schottky diodes terminated with p-NiO field limiting rings
,”
Appl. Phys. Lett.
118
,
202102
(
2021
).
21.
T. C.
Hu
,
Z. P.
Wang
,
N.
Sun
,
H. H.
Gong
,
X. X.
Yu
,
F. F.
Ren
,
Y.
Yang
,
S. L.
Gu
,
Y. D.
Zheng
,
R.
Zhang
, and
J. D.
Ye
, “
A self-aligned Ga2O3 heterojunction barrier Schottky power diode
,”
Appl. Phys. Lett.
123
,
013507
(
2023
).
22.
F.
Wu
,
Y.
Wang
,
G.
Jian
,
G.
Xu
,
X.
Zhou
,
W.
Guo
,
J.
Du
,
Q.
Liu
,
S.
Dun
,
Z.
Yu
,
Y.
Lv
,
Z.
Feng
,
S.
Cai
, and
S.
Long
, “
Superior performance β-Ga2O3 junction barrier Schottky diodes implementing p-NiO heterojunction and beveled field plate for hybrid Cockcroft–Walton voltage multiplier
,”
IEEE Trans. Electron Devices
70
,
1199
1205
(
2023
).
23.
B.
Bakeroot
,
S.
Stoffels
,
N.
Posthuma
,
D.
Wellekens
, and
S.
Decoutere
, in
31st International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
2019
), pp.
419
-
422
.
24.
H.
Yuan
,
Y.
Liu
,
Y.
He
,
Y.
Hu
,
T.
Zhang
,
X.
Tang
,
Q.
Song
,
Y.
Zhang
,
Y.
Zhang
,
X.
He
,
Q.
Qian
, and
L.
Xiao
, “
Characteristic and robustness of trench floating limiting rings for 4H-SiC junction barrier Schottky rectifiers
,”
IEEE Electron Device Lett.
41
,
1056
1059
(
2020
).
25.
Y.
Wang
,
M.
Porter
,
M.
Xiao
,
A.
Lu
,
N.
Yee
,
I.
Kravchenko
,
B.
Srijanto
,
K.
Cheng
,
H. Y.
Wong
, and
Y.
Zhang
, “
Implanted guard ring edge termination with avalanche capability for vertical GaN devices
,”
IEEE Trans. Electron Devices
71
,
1481
1487
(
2024
).
26.
Z.
Yan
,
S.
Yuan
,
X.
Jiang
,
C.
Deng
,
Z.
Pang
,
X.
Bu
,
H.
Hong
,
X.
Gong
, and
Y.
Hao
, “
A novel AlGaN/GaN-based Schottky barrier diode with partial P-GaN cap layer and semicircular T-anode for temperature sensors
,”
IEEE Trans. Electron Devices
70
,
5087
5091
(
2023
).
27.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
, and
H. G.
Xing
, “
Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron,sp of up to 0.95 GW/cm2
,”
IEEE Electron Device Lett.
41
,
107
110
(
2020
).
28.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
, and
H. G.
Xing
, “
Fin-channel orientation dependence of forward conduction in kV-class Ga2O3 trench Schottky barrier diodes
,”
Appl. Phys. Express
12
,
061007
(
2019
).
29.
B.
Wang
,
M.
Xiao
,
X.
Yan
,
H. Y.
Wong
,
J.
Ma
,
K.
Sasaki
,
H.
Wang
, and
Y.
Zhang
, “
High-voltage vertical Ga2O3 power rectifiers operational at high temperatures up to 600 K
,”
Appl. Phys. Lett.
115
,
263503
(
2019
).
30.
M.
Higashiwaki
,
K.
Konishi
,
K.
Sasaki
,
K.
Goto
,
K.
Nomura
,
Q. T.
Thieu
,
R.
Togashi
,
H.
Murakami
,
Y.
Kumagai
,
B.
Monemar
,
A.
Koukitu
,
A.
Kuramata
, and
S.
Yamakoshi
, “
Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n–Ga2O3 drift layers grown by halide vapor phase epitaxy
,”
Appl. Phys. Lett.
108
,
133503
(
2016
).
31.
M.
Xiao
,
Y.
Wang
,
R.
Zhang
,
Q.
Song
,
M.
Porter
,
E.
Carlson
,
K.
Cheng
,
K.
Ngo
, and
Y.
Zhang
, “
Robust avalanche in 1.7 kV vertical GaN diodes with a single-implant bevel edge termination
,”
IEEE Electron Device Lett.
44
,
1616
1619
(
2023
).
32.
Y.
Ma
,
Y.
Qin
,
M.
Porter
,
J.
Spencer
,
Z.
Du
,
M.
Xiao
,
B.
Wang
,
Y.
Wang
,
A. G.
Jacobs
,
H.
Wang
,
M.
Tadjer
, and
Y.
Zhang
, “
Wide-bandgap nickel oxide with tunable acceptor concentration for multidimensional power devices
,”
Adv. Electron. Mater.
2300662
(
2023
).
33.
R.
Zhang
,
J. P.
Kozak
,
M.
Xiao
,
J.
Liu
, and
Y.
Zhang
, “
Surge-energy and overvoltage ruggedness of P-Gate GaN HEMTs
,”
IEEE Trans. Power Electron.
35
,
13409
13419
(
2020
).
34.
J. P.
Kozak
,
R.
Zhang
,
Q.
Song
,
J.
Liu
,
W.
Saito
, and
Y.
Zhang
, “
True breakdown voltage and overvoltage margin of GaN power HEMTs in hard switching
,”
IEEE Electron Device Lett.
42
,
505
508
(
2021
).
35.
K.
Konishi
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
1-kV vertical Ga2O3 field-plated Schottky barrier diodes
,”
Appl. Phys. Lett.
110
,
103506
(
2017
).
36.
Z.
Wang
,
H.
Gong
,
X.
Yu
,
F.
Ren
,
S.
Gu
,
Y.
Zheng
,
R.
Zhang
, and
J.
Ye
, in
35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
2023
), pp.
326
329
.
37.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
, and
H. G.
Xing
, “
Guiding principles for trench Schottky barrier diodes based on ultrawide bandgap semiconductors: A case study in Ga2O3
,”
IEEE Trans. Electron Devices
67
,
3938
3947
(
2020
).
38.
T.
Kumabe
,
A.
Yoshikawa
,
M.
Kushimoto
,
Y.
Honda
,
M.
Arai
,
J.
Suda
, and
H.
Amano
, in
International Electron Devices Meeting (IEDM)
(
IEEE
,
2023
), pp.
1
4
.
39.
H.
Ahmad
,
Z.
Engel
,
C. M.
Matthews
,
S.
Lee
, and
W. A.
Doolittle
, “
Realization of homojunction PN AlN diodes
,”
J. Appl. Phys.
131
,
175701
(
2022
).
40.
T.
Maeda
,
R.
Page
,
K.
Nomoto
,
M.
Toita
,
H. G.
Xing
, and
D.
Jena
, “
AlN quasi-vertical Schottky barrier diode on AlN bulk substrate using Al0.9Ga0.1N current spreading layer
,”
Appl. Phys. Express
15
,
061007
(
2022
).
41.
Q.
Li
,
J.
Wang
,
G.
Shao
,
G.
Chen
,
S.
He
,
Q.
Zhang
,
S.
Zhang
,
R.
Wang
,
S.
Fan
, and
H. X.
Wang
, “
Breakdown voltage enhancement of vertical diamond Schottky barrier diode with annealing method and AlO field plate structure
,”
IEEE Electron Device Lett.
43
,
1937
1940
(
2022
).
42.
M.
Dutta
,
F. A. M.
Koeck
,
W.
Li
,
R. J.
Nemanich
, and
S.
Chowdhury
, “
High voltage diodes in diamond using (100)- and (111)- substrates
,”
IEEE Electron Device Lett.
38
,
600
603
(
2017
).
43.
D.
Zhao
,
Z.
Liu
,
J.
Wang
,
W.
Yi
,
R.
Wang
,
K.
Wang
, and
H.
Wang
, “
Performance improved vertical diamond Schottky barrier diode with fluorination-termination structure
,”
IEEE Electron Device Lett.
40
,
1229
1232
(
2019
).
44.
A.
Traoré
,
P.
Muret
,
A.
Fiori
,
D.
Eon
,
E.
Gheeraert
, and
J.
Pernot
, “
Zr/oxidized diamond interface for high power Schottky diodes
,”
Appl. Phys. Lett.
104
,
052105
(
2014
).
45.
E.
Farzana
,
A.
Bhattacharyya
,
N. S.
Hendricks
,
T.
Itoh
,
S.
Krishnamoorthy
, and
J. S.
Speck
, “
Oxidized metal Schottky contact with high-κ dielectric field plate for low-loss high-power vertical β-Ga2O3 Schottky diodes
,”
APL Mater.
10
,
111104
(
2022
).
You do not currently have access to this content.