In the realm of next-generation nonvolatile memories, there is a strong demand for resistive random access memory (ReRAM) devices that are affordable, stable, and simple to produce. Metal–organic frameworks (MOFs) have garnered extensive research attention across diverse fields due to their remarkable chemical adaptability, stability, and exceptional structural variability. In this work, a ReRAM device has been fabricated that incorporates a solution-processed thin film of zeolitic imidazolate framework (ZIF-67), a material of MOFs class, as the resistive switching (RS) layer. This Al/ZIF-67/ITO structured device possesses a consistent RS behavior with a high on/off resistance ratio of 10 4. The retention of low resistance state and high resistance state have been shown up to 10 4 s. Furthermore, the device also shows a consistent switching for 500 cycles of pulse switching signals of +6 V/−1.8 V (set/reset). Based on the impedance spectroscopy analysis, a filamentary switching mechanism has been established for the RS behavior of the device. The robust and enduring performance, coupled with the substantial on/off resistance ratio and high retention of the states, makes this device a promising candidate for nonvolatile ReRAM applications.

1.
A.
Chen
, “
A review of emerging non-volatile memory (NVM) technologies and applications
,”
Solid-State Electron.
125
,
25
38
(
2016
).
2.
M.
Si
,
H.-Y.
Cheng
,
T.
Ando
,
G.
Hu
, and
P. D.
Ye
, “
Overview and outlook of emerging non-volatile memories
,”
MRS Bull.
46
,
946
958
(
2021
).
3.
R.
Bez
and
A.
Pirovano
, “
Non-volatile memory technologies: Emerging concepts and new materials
,”
Mater. Sci. Semicond. Process.
7
,
349
355
(
2004
).
4.
A.
Sawa
, “
Resistive switching in transition metal oxides
,”
Mater. Today
11
,
28
36
(
2008
).
5.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
,
80
83
(
2008
).
6.
P.
Feng
,
C.
Chao
,
Z-s
Wang
,
Y-c
Yang
,
Y.
Jing
, and
Z.
Fei
, “
Nonvolatile resistive switching memories-characteristics, mechanisms and challenges
,”
Prog. Nat. Sci.: Mater. Int.
20
,
1
15
(
2010
).
7.
R.
Waser
and
M.
Aono
, “
Nanoionics-based resistive switching memories
,”
Nat. Mater.
6
,
833
840
(
2007
).
8.
M.-J.
Lee
,
C. B.
Lee
,
D.
Lee
,
S. R.
Lee
,
M.
Chang
,
J. H.
Hur
,
Y.-B.
Kim
,
C.-J.
Kim
,
D. H.
Seo
,
S.
Seo
et al, “
A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures
,”
Nat. Mater.
10
,
625
630
(
2011
).
9.
T.-C.
Chang
,
K.-C.
Chang
,
T.-M.
Tsai
,
T.-J.
Chu
, and
S. M.
Sze
, “
Resistance random access memory
,”
Mater. Today
19
,
254
264
(
2016
).
10.
Z.
Xu
,
Y.
Li
,
Y.
Xia
,
C.
Shi
,
S.
Chen
,
C.
Ma
,
C.
Zhang
, and
Y.
Li
, “
Organic frameworks memristor: An emerging candidate for data storage, artificial synapse, and neuromorphic device
,”
Adv. Funct. Mater.
34
,
2312658
(
2024
).
11.
F.
Zahoor
,
T. Z.
Azni Zulkifli
, and
F. A.
Khanday
, “
Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications
,”
Nanoscale Res. Lett.
15
,
90
(
2020
).
12.
V.
Gupta
,
S.
Kapur
,
S.
Saurabh
, and
A.
Grover
, “
Resistive random access memory: A review of device challenges
,”
IETE Tech. Rev.
37
,
377
390
(
2019
).
13.
D. S.
Jeong
,
R.
Thomas
,
R.
Katiyar
,
J.
Scott
,
H.
Kohlstedt
,
A.
Petraru
, and
C. S.
Hwang
, “
Emerging memories: Resistive switching mechanisms and current status
,”
Rep. Prog. Phys.
75
,
076502
(
2012
).
14.
S.
Yu
,
Y.
Wu
,
R.
Jeyasingh
,
D.
Kuzum
, and
H.-S. P.
Wong
, “
An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation
,”
IEEE Trans. Electron Devices
58
,
2729
2737
(
2011
).
15.
J.
Choi
,
S.
Park
,
J.
Lee
,
K.
Hong
,
D.-H.
Kim
,
C. W.
Moon
,
G. D.
Park
,
J.
Suh
,
J.
Hwang
,
S. Y.
Kim
et al, “
Organolead halide perovskites for low operating voltage multilevel resistive switching
,”
Adv. Mater.
28
,
6562
6567
(
2016
).
16.
B.
Choi
,
D. S.
Jeong
,
S.
Kim
,
C.
Rohde
,
S.
Choi
,
J. H.
Oh
,
H.
Kim
,
C.
Hwang
,
K.
Szot
,
R.
Waser
et al, “
Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition
,”
J. Appl. Phys.
98
,
033715
(
2005
).
17.
Z.
Wang
,
H.
Wu
,
G. W.
Burr
,
C. S.
Hwang
,
K. L.
Wang
,
Q.
Xia
, and
J. J.
Yang
, “
Resistive switching materials for information processing
,”
Nat. Rev. Mater.
5
,
173
195
(
2020
).
18.
Y. C.
Yang
,
F.
Pan
,
Q.
Liu
,
M.
Liu
, and
F.
Zeng
, “
Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application
,”
Nano Lett.
9
,
1636
1643
(
2009
).
19.
R.
Waser
, “
Resistive non-volatile memory devices (invited paper)
,”
Microelectron. Eng.
86
,
1925
1928
(
2009
).
20.
H.
Akinaga
and
H.
Shima
, “
Resistive random access memory (ReRAM) based on metal oxides
,”
Proc. IEEE
98
,
2237
2251
(
2010
).
21.
K.
Sun
,
J.
Chen
, and
X.
Yan
, “
The future of memristors: Materials engineering and neural networks
,”
Adv. Funct. Mater.
31
,
2006773
(
2021
).
22.
H.
Sharma
,
N.
Saini
,
A.
Kumar
, and
R.
Srivastava
, “
AgBiS2 quantum dot based multilevel resistive switching for low power electronics
,”
J. Mater. Chem. C
11
,
11392
(
2023
).
23.
S.
Gao
,
X.
Yi
,
J.
Shang
,
G.
Liu
, and
R.-W.
Li
, “
Organic and hybrid resistive switching materials and devices
,”
Chem. Soc. Rev.
48
,
1531
1565
(
2019
).
24.
L.
Yuan
,
S.
Liu
,
W.
Chen
,
F.
Fan
, and
G.
Liu
, “
Organic memory and memristors: From mechanisms, materials to devices
,”
Adv. Electron. Mater.
7
,
2100432
(
2021
).
25.
Y.
Wang
,
Z.
Lv
,
Q.
Liao
,
H.
Shan
,
J.
Chen
,
Y.
Zhou
,
L.
Zhou
,
X.
Chen
,
V. A.
Roy
,
Z.
Wang
et al, “
Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching
,”
Adv. Mater.
30
,
1800327
(
2018
).
26.
M.-A.
Gatou
,
I.-A.
Vagena
,
N.
Lagopati
,
N.
Pippa
,
M.
Gazouli
, and
E. A.
Pavlatou
, “
Functional MOF-based materials for environmental and biomedical applications: A critical review
,”
Nanomaterials
13
,
2224
(
2023
).
27.
S. L.
James
, “
Metal-organic frameworks
,”
Chem. Soc. Rev.
32
,
276
288
(
2003
).
28.
J. L.
Rowsell
and
O. M.
Yaghi
, “
Metal–organic frameworks: A new class of porous materials
,”
Microporous Mesoporous Mater.
73
,
3
14
(
2004
).
29.
N. W.
Ockwig
,
O.
Delgado-Friedrichs
,
M.
O'Keeffe
, and
O. M.
Yaghi
, “
Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks
,”
Acc. Chem. Res.
38
,
176
182
(
2005
).
30.
X.
Zhang
,
G.
Li
,
D.
Wu
,
X.
Li
,
N.
Hu
,
J.
Chen
,
G.
Chen
, and
Y.
Wu
, “
Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy
,”
Biosens. Bioelectron.
137
,
178
198
(
2019
).
31.
H.
Furukawa
,
N.
Ko
,
Y. B.
Go
,
N.
Aratani
,
S. B.
Choi
,
E.
Choi
,
A. Ö.
Yazaydin
,
R. Q.
Snurr
,
M.
O'Keeffe
,
J.
Kim
et al, “
Ultrahigh porosity in metal-organic frameworks
,”
Science
329
,
424
428
(
2010
).
32.
M. P.
Suh
,
H. J.
Park
,
T. K.
Prasad
, and
D.-W.
Lim
, “
Hydrogen storage in metal–organic frameworks
,”
Chem. Rev.
112
,
782
835
(
2012
).
33.
Y.
Peng
,
V.
Krungleviciute
,
I.
Eryazici
,
J. T.
Hupp
,
O. K.
Farha
, and
T.
Yildirim
, “
Methane storage in metal–organic frameworks: Current records, surprise findings, and challenges
,”
J. Am. Chem. Soc.
135
,
11887
11894
(
2013
).
34.
R.
Banerjee
,
A.
Phan
,
B.
Wang
,
C.
Knobler
,
H.
Furukawa
,
M.
O'Keeffe
, and
O. M.
Yaghi
, “
High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture
,”
Science
319
,
939
943
(
2008
).
35.
S.
Zhou
,
Y.
Wei
,
L.
Li
,
Y.
Duan
,
Q.
Hou
,
L.
Zhang
,
L.-X.
Ding
,
J.
Xue
,
H.
Wang
, and
J.
Caro
, “
Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation
,”
Sci. Adv.
4
,
eaau1393
(
2018
).
36.
A.
Cadiau
,
K.
Adil
,
P.
Bhatt
,
Y.
Belmabkhout
, and
M.
Eddaoudi
, “
A metal-organic framework–based splitter for separating propylene from propane
,”
Science
353
,
137
140
(
2016
).
37.
L.
Li
,
R.-B.
Lin
,
R.
Krishna
,
H.
Li
,
S.
Xiang
,
H.
Wu
,
J.
Li
,
W.
Zhou
, and
B.
Chen
, “
Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites
,”
Science
362
,
443
446
(
2018
).
38.
J.-D.
Xiao
and
H.-L.
Jiang
, “
Metal–organic frameworks for photocatalysis and photothermal catalysis
,”
Acc. Chem. Res.
52
,
356
366
(
2018
).
39.
C. M.
McGuirk
,
M. J.
Katz
,
C. L.
Stern
,
A. A.
Sarjeant
,
J. T.
Hupp
,
O. K.
Farha
, and
C. A.
Mirkin
, “
Turning on catalysis: Incorporation of a hydrogen-bond-donating squaramide moiety into a Zr metal–organic framework
,”
J. Am. Chem. Soc.
137
,
919
925
(
2015
).
40.
W.
Zhang
,
Z.-Y.
Wu
,
H.-L.
Jiang
, and
S.-H.
Yu
, “
Nanowire-directed templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis
,”
J. Am. Chem. Soc.
136
,
14385
14388
(
2014
).
41.
E. M.
Dias
and
C.
Petit
, “
Towards the use of metal–organic frameworks for water reuse: A review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field
,”
J. Mater. Chem. A
3
,
22484
22506
(
2015
).
42.
M.-S.
Yao
,
X.-J.
Lv
,
Z.-H.
Fu
,
W.-H.
Li
,
W.-H.
Deng
,
G.-D.
Wu
, and
G.
Xu
, “
Layer-by-layer assembled conductive metal–organic framework nanofilms for room-temperature chemiresistive sensing
,”
Angew. Chem. Int. Ed.
56
,
16510
16514
(
2017
).
43.
J.
Dong
,
K.
Zhang
,
X.
Li
,
Y.
Qian
,
H.
Zhu
,
D.
Yuan
,
Q.-H.
Xu
,
J.
Jiang
, and
D.
Zhao
, “
Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing
,”
Nat. Commun.
8
,
1142
(
2017
).
44.
G.
Lu
and
J. T.
Hupp
, “
Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases
,”
J. Am. Chem. Soc.
132
,
7832
7833
(
2010
).
45.
D. M.
D'Alessandro
,
J. R.
Kanga
, and
J. S.
Caddy
, “
Towards conducting metal-organic frameworks
,”
Aust. J. Chem.
64
,
718
722
(
2011
).
46.
S. M.
Yoon
,
S. C.
Warren
, and
B. A.
Grzybowski
, “
Storage of electrical information in metal–organic-framework memristors
,”
Angew. Chem. Int. Ed.
53
,
4437
4441
(
2014
).
47.
S.
Dang
,
Q.-L.
Zhu
, and
Q.
Xu
, “
Nanomaterials derived from metal–organic frameworks
,”
Nat. Rev. Mater.
3
,
17075
(
2017
).
48.
H.
Hayashi
,
A. P.
Côté
,
H.
Furukawa
,
M.
O'Keeffe
, and
O. M.
Yaghi
, “
Zeolite a imidazolate frameworks
,”
Nat. Mater.
6
,
501
506
(
2007
).
49.
M.
Eddaoudi
,
D. F.
Sava
,
J. F.
Eubank
,
K.
Adil
, and
V.
Guillerm
, “
Zeolite-like metal–organic frameworks (ZMOFs): Design, synthesis, and properties
,”
Chem. Soc. Rev.
44
,
228
249
(
2015
).
50.
K. S.
Park
,
Z.
Ni
,
A. P.
Côté
,
J. Y.
Choi
,
R.
Huang
,
F. J.
Uribe-Romo
,
H. K.
Chae
,
M.
O'Keeffe
, and
O. M.
Yaghi
, “
Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
10186
10191
(
2006
).
51.
M.-J.
Park
and
J.-S.
Lee
, “
Zeolitic-imidazole framework thin film-based flexible resistive switching memory
,”
RSC Adv.
7
,
21045
21049
(
2017
).
52.
A. W.
Thornton
,
D.
Dubbeldam
,
M. S.
Liu
,
B. P.
Ladewig
,
A. J.
Hill
, and
M. R.
Hill
, “
Feasibility of zeolitic imidazolate framework membranes for clean energy applications
,”
Energy Environ. Sci.
5
,
7637
7646
(
2012
).
53.
G.
Wei
,
Z.
Zhou
,
X.
Zhao
,
W.
Zhang
, and
C.
An
, “
Ultrathin metal–organic framework nanosheet-derived ultrathin Co3O4 nanomeshes with robust oxygen-evolving performance and asymmetric supercapacitors
,”
ACS Appl. Mater. Interfaces
10
,
23721
23730
(
2018
).
54.
H.
Park
,
D. A.
Reddy
,
Y.
Kim
,
R.
Ma
,
J.
Choi
,
T. K.
Kim
, and
K.-S.
Lee
, “
Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons as full-spectrum light harvesting photocatalyst for environmental remediation
,”
Solid State Sci.
62
,
82
89
(
2016
).
55.
K.
Devarayapalli
,
S. P.
Vattikuti
,
T.
Sreekanth
,
K. S.
Yoo
,
P.
Nagajyothi
, and
J.
Shim
, “
Hydrogen production and photocatalytic activity of g-C3N4/Co-MOF (ZIF-67) nanocomposite under visible light irradiation
,”
Appl. Organomet. Chem.
34
,
e5376
(
2020
).
56.
H.
Chen
,
X.
Wu
,
R.
Zhao
,
Z.
Zheng
,
Q.
Yuan
,
Z.
Dong
, and
W.
Gan
, “
Preparation of reduced graphite oxide loaded with cobalt (ii) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole
,”
Microchim. Acta
186
,
623
(
2019
).
57.
R.
Zhu
,
J.
Ding
,
J.
Yang
,
H.
Pang
,
Q.
Xu
,
D.
Zhang
, and
P.
Braunstein
, “
Quasi-ZIF-67 for boosted oxygen evolution reaction catalytic activity via a low temperature calcination
,”
ACS Appl. Mater. Interfaces
12
,
25037
25041
(
2020
).
58.
A.
Jonscher
,
Dielectric Relaxation in Solids
(
Chelsea Dielectrics Press
,
1983
).
59.
X.
Jiang
,
Y.
Zhao
,
Y.
Chen
,
D.
Li
,
Y.
Luo
,
D.
Zhao
,
Z.
Sun
,
J.
Sun
, and
H.
Zhao
, “
Characteristics of different types of filaments in resistive switching memories investigated by complex impedance spectroscopy
,”
Appl. Phys. Lett.
102
,
253507
(
2013
).
60.
C.
Schindler
,
M.
Weides
,
M.
Kozicki
, and
R.
Waser
, “
Low current resistive switching in Cu–SiO2 cells
,”
Appl. Phys. Lett.
92
,
122910
(
2008
).
61.
Y.
Yin Chen
,
G.
Pourtois
,
C.
Adelmann
,
L.
Goux
,
B.
Govoreanu
,
R.
Degreave
,
M.
Jurczak
,
J.
Kittl
,
G.
Groeseneken
, and
D.
Wouters
, “
Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device
,”
Appl. Phys. Lett.
100
,
113513
(
2012
).
62.
L.
Goux
,
P.
Czarnecki
,
Y. Y.
Chen
,
L.
Pantisano
,
X.
Wang
,
R.
Degraeve
,
B.
Govoreanu
,
M.
Jurczak
,
D.
Wouters
, and
L.
Altimime
, “
Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells
,”
Appl. Phys. Lett.
97
,
243509
(
2010
).
63.
Y.
Yang
and
W.
Lu
, “
Nanoscale resistive switching devices: Mechanisms and modeling
,”
Nanoscale
5
,
10076
10092
(
2013
).
64.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
, “
Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges
,”
Adv. Mater.
21
,
2632
2663
(
2009
).
65.
Y.-J.
Choi
,
S.
Bang
,
T.-H.
Kim
,
K.
Hong
,
S.
Kim
,
S.
Kim
,
B.-G.
Park
, and
W. Y.
Choi
, “
Electric-field-induced metal filament formation in cobalt-based CBRAM observed by TEM
,”
ACS Appl. Electron. Mater.
5
,
1834
1843
(
2023
).
66.
J.
Radhakrishnan
,
A.
Belmonte
,
L.
Nyns
,
W.
Devulder
,
G.
Vereecke
,
G. L.
Donadio
,
P.
Kumbhare
,
R.
Delhougne
,
M.
Houssa
,
G. S.
Kar
et al, “
Impact of La–OH bonds on the retention of Co/LaSiO CBRAM
,”
Appl. Phys. Lett.
117
,
151902
(
2020
).
67.
N.
Shukla
,
R. K.
Ghosh
,
B.
Grisafe
, and
S.
Datta
, “
Fundamental mechanism behind volatile and non-volatile switching in metallic conducting bridge RAM
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2017
), p.
4.3
.
68.
A.
Belmonte
,
J.
Radhakrishnan
,
L.
Goux
,
G.
Donadio
,
P.
Kumbhare
,
A.
Redolfi
,
R.
Delhougne
,
L.
Nyns
,
W.
Devulder
,
T.
Witters
et al, “
Co active electrode enhances CBRAM performance and scaling potential
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2019
), p.
35.8
.
You do not currently have access to this content.