The Seebeck effect in graphene with uniform Kekulé lattice distortion has been studied using the tight-binding model combined with the nonequilibrium Green's function method. The numerical results of this work show that the Seebeck coefficient of the O-shaped Kekulé graphene can be enhanced by modulating the gate voltage. At room temperature ( T 300 K), the Seebeck coefficient for the armchair nanoribbon is S c 1370 μV/K and for the zigzag nanoribbon is S c 1260 μV/K. At low temperature ( T 128 K), the Seebeck coefficient for the armchair nanoribbon is S c 2500 μV/K. In addition, the nano-structuration of the O-shaped Kekulé graphene layer induces an anisotropic behavior in the Seebeck effect. Our work provides an idea for the fabrication of efficient and controllable thermoelectric effect devices.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
2.
J. R.
Williams
,
L.
DiCarlo
, and
C. M.
Marcus
,
Science
317
,
638
(
2007
).
3.
D. A.
Abanin
and
L. S.
Abanin
,
Science
317
,
641
(
2007
).
4.
S.-G.
Cheng
,
Y.-X.
Xing
,
J.
Wang
, and
Q.-F.
Sun
,
Phys. Rev. Lett.
103
,
167003
(
2009
).
5.
C. L.
Kane
and
E. J.
Mele
,
Phys. Rev. Lett.
95
,
146802
(
2005
).
6.
C. L.
Kane
and
E. J.
Mele
,
Phys. Rev. Lett.
95
,
226801
(
2005
).
7.
W.
Long
,
Q.-F.
Sun
, and
J.
Wang
,
Phys. Rev. Lett.
101
,
166806
(
2008
).
8.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
(
2005
).
9.
K. S.
Novoselov
,
E.
Mccann
,
S. V.
Morozov
,
V. I.
Fal'ko
,
M. I.
Katsnelson
,
U.
Zeitler
,
D.
Jiang
,
F.
Schedin
, and
A. K.
Geim
,
Nat. Phys.
2
,
177
(
2006
).
10.
M. I.
Katsnelson
,
K. S.
Novoselov
, and
A. K.
Geim
,
Nat. Phys.
2
,
620
(
2006
).
11.
S.
Konschuh
,
M.
Gmitra
, and
J.
Fabian
,
Phys. Rev. B
82
,
245412
(
2010
).
12.
C.-H.
Bao
,
H.-Y.
Zhang
,
T.
Zhang
,
X.
Wu
,
L.-P.
Luo
,
S.-H.
Zhou
,
Q.
Li
,
Y.-H.
Hou
,
W.
Yao
,
L.-W.
Liu
,
P.
Yu
,
J.
Li
,
W.-H.
Duan
,
H.
Yao
,
Y.-L.
Wang
, and
S.-Y.
Zhou
,
Phys. Rev. Lett.
126
,
206804
(
2021
).
13.
K. K.
Gomes
,
W.
Mar
,
W.
Ko
,
F.
Guinea
, and
H. C.
Manoharan
,
Nature
483
,
306
(
2012
).
14.
Y.-F.
Ren
,
X.-Z.
Deng
,
Z.-H.
Qiao
,
C.-S.
Li
,
J.
Jung
,
C.-G.
Zeng
,
Z.-Y.
Zhang
, and
Q.
Niu
,
Phys. Rev. B
91
,
245415
(
2015
).
15.
C.
Gutiérrez
,
C.-J.
Kim
,
L.
Brown
,
T.
Schiros
,
D.
Nordlund
,
E. B.
Lochocki
,
K. M.
Shen
,
J.
Park
, and
A. N.
Pasupathy
,
Nat. Phys.
12
,
950
(
2016
).
16.
M.
Farjam
and
H.
Rafii-Taba
,
Phys. Rev. B
79
,
045417
(
2009
).
17.
Z.-N.
Lin
,
W.
Qin
,
J.
Zeng
,
W.
Chen
,
P.
Cui
,
J.-H.
Cho
,
Z.-H.
Qiao
, and
Z.-Y.
Zhang
,
Nano Lett.
17
,
4013
(
2017
).
18.
Y.-Z.
Liu
,
C.-S.
Lian
,
Y.
Li
,
Y.
Xu
, and
W.-H.
Duan
,
Phys. Rev. Lett.
119
,
255901
(
2017
).
19.
E.
Andrade
,
R.
Carrillo-Bastos
, and
G.
Naumis
,
Phys. Rev. B
99
,
035411
(
2019
).
20.
O. V.
Gamayun
,
V. P.
Ostroukh
,
N. V.
Gnezdilov
,
İ.
Adagideli
, and
C. W. J.
Beenakker
,
New J. Phys.
20
,
023016
(
2018
).
21.
V. V.
Cheianov
,
V. I.
Fal'ko
,
O.
Syljuåsen
, and
B. L.
Altshuler
,
Solid State Commun.
149
,
1499
(
2009
).
22.
C.-Y.
Hou
,
C.
Chamon
, and
C.
Mudry
,
Phys. Rev. Lett.
98
,
186809
(
2007
).
23.
L. H.
Wu
and
X.
Hu
,
Sci. Rep.
6
,
24347
(
2016
).
24.
P. A.
Pantaleon
,
R.
Carrillo-Bastos
, and
Y.
Xian
,
J. Phys.: Condens. Matter
31
,
085802
(
2019
).
25.
Y. T.
Yang
,
Z. Y.
Jia
,
Y. J.
Wu
,
R.-C.
Xiao
,
Z. H.
Hang
,
H.
Jiang
, and
X. C.
Xie
,
Sci. Bull.
65
,
531
537
(
2020
).
26.
J. J.
Wang
,
S.
Liu
, and
J.
Wang
,
Phys. Rev. B
101
,
245428
(
2020
).
27.
P. P.
Zhang
,
C.
Wang
,
Y. X.
Li
,
L. X.
Zhai
, and
J. T.
Song
,
Appl. Phys. Lett.
123
,
163501
(
2023
).
28.
D. K. C.
MacDonald
,
Thermoelectricity: An Introduction to the Principles
(
Wiley
,
New York
,
1962
).
29.
T.
Miyasato
,
N.
Abe
,
T.
Fujii
,
A.
Asamitsu
,
S.
Onoda
,
Y.
Onose
,
N.
Nagaosa
, and
Y.
Tokura
,
Phys. Rev. Lett.
99
,
086602
(
2007
).
30.
Y.-X.
Xing
,
Q.-F.
Sun
, and
J.
Wang
,
Phys. Rev. B
80
,
235411
(
2009
).
31.
Y.
Zhang
,
J. T.
Song
, and
Y. X.
Li
,
J. Appl. Phys.
117
,
124301
(
2015
).
32.
R.
Ma
,
L.
Sheng
,
M.
Liu
, and
D. N.
Sheng
,
Phys. Rev. B
87
,
115304
(
2013
).
33.
A.
Mawrie
and
B.
Muralidharan
,
Phys. Rev. B
100
,
081403(R)
(
2019
).
34.
A. M.
Dehkordi
,
M.
Zebarjadi
,
J.
He
, and
T. M.
Tritt
,
Mater. Sci. Eng., R
97
,
1
22
(
2015
).
35.
M.
Elyasi
and
G. E. W.
Bauer
,
Phys. Rev. B
103
,
054436
(
2021
).
36.
S. H.
Lv
,
S. B.
Feng
, and
Y. X.
Li
,
J. Phys.: Condens. Matter
24
,
145801
(
2012
).
37.
K. J.
Lamas-Martínez
,
J. A.
Briones-Torres
,
S.
Molina-Valdovinos
, and
I.
Rodríguez-Vargas
,
Phys. Rev. B
107
,
245427
(
2023
).
38.
L. J.
Xie
,
L.
Yin
,
Y.
Yu
,
G.
Peng
,
S. W.
Song
,
P. J.
Ying
,
S. T.
Cai
,
Y. X.
Sun
,
W. J.
Shi
,
H.
Wu
,
N.
Qu
,
F. K.
Guo
,
W.
Cai
,
H. J.
Wu
,
Q.
Zhang
,
K.
Nielsch
,
Z. F.
Ren
,
Z. H.
Liu
, and
J. H.
Sui
,
Science
382
,
921
(
2023
).
39.
L.
Xie
,
C.
Ming
,
Q. F.
Song
,
C.
Wang
,
J. C.
Liao
,
L.
Wang
,
C. X.
Zhu
,
F. F.
Xu
,
Y.-Y.
Sun
,
S. Q.
Bai
, and
L. D.
Chen
,
Sci. Adv.
9
,
7919
(
2023
).
40.
41.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Holt, Rinehart and Winston
,
California
,
1976
).
42.
E. M.
Hankiewicz
,
L. W.
Molenkamp
,
T.
Jungwirth
, and
J.
Sinova
,
Phys. Rev. B
70
,
241301(R)
(
2004
).
43.
Z.
Hou
,
Y.-X.
Xing
,
A.-M.
Guo
, and
Q.-F.
Sun
,
Phys. Rev. B
94
,
064516
(
2016
).
44.
W.
Ren
,
Z.-H.
Qiao
,
J.
Wang
,
Q.-F.
Sun
, and
H.
Guo
,
Phys. Rev. Lett.
97
,
066603
(
2006
).
45.
J.-T.
Song
,
H.-W.
Liu
,
J.
Liu
,
Y.-X.
Li
,
R.
Joynt
,
Q.-F.
Sun
, and
X. C.
Xie
,
Phys. Rev. B
93
,
195302
(
2016
).
47.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
1995
).
48.
P. P.
Zhang
,
C.
Wang
,
Y. X.
Li
,
L. X.
Zhai
, and
J. T.
Song
,
New J. Phys.
25
,
113021
(
2023
).
You do not currently have access to this content.