This study investigates spatially resolved phonon-mediated thermal transport across nano-sized grains and grain boundaries (GBs) in 3C-SiC using molecular dynamics (MD) simulations. This investigation involves controlling the complete range of inter-grain misorientation tilt angles ( θ = 0°–90°) and nanoscale grain sizes ( d = 2.18–130.77 nm). The grain boundary energy and interfacial thermal transport are found to be highly θ-sensitive and asymmetric with respect to θ = 45° due to the low symmetry associated with two interpenetrating diatomic SiC fcc lattices. When adjacent grains are tilted at θ = 14.25°, the interfacial heat conduction is highly suppressed compared to other θ values, especially for larger grains. The most stable atomic configuration of the GB region associated with the minimal GB energy results in the highest suppression of heat conduction across the GB interface. Spatially resolved thermal anisotropy reveals a strong GB-mediated nanoscale hydrodynamic phonon Poiseuille effect when heat flows parallel to the GB planes, as shown by our perturbed MD study. With the reduction of d, the intra-grain and inter-GB thermal conductivities decrease due to the enhanced phonon scattering from interfaces, but the difference between these conductivities becomes negligible for the heat flow normal to the GB planes. It is envisioned that nanoscale spatially resolved control of thermal energy will provide useful guidance to engineer nanocrystalline ceramics with tunable interfacial thermal properties.

1.
L. L.
Snead
,
T.
Nozawa
,
Y.
Katoh
,
T.-S.
Byun
,
S.
Kondo
, and
D. A.
Petti
, “
Handbook of SiC properties for fuel performance modeling
,”
J. Nucl. Mater.
371
(
1–3
),
329
377
(
2007
).
2.
S. J.
Zinkle
and
G.
Was
, “
Materials challenges in nuclear energy
,”
Acta Mater.
61
(
3
),
735
758
(
2013
).
3.
C.
Henager
, Jr.
,
B. N.
Nguyen
,
R. J.
Kurtz
,
T. J.
Roosendaal
,
B. A.
Borlaug
,
M.
Ferraris
,
A.
Ventrella
, and
Y.
Katoh
, “
Modeling and testing miniature torsion specimens for SiC joining development studies for fusion
,”
J. Nucl. Mater.
466
,
253
268
(
2015
).
4.
L.
Snead
,
T.
Nozawa
,
M.
Ferraris
,
Y.
Katoh
,
R.
Shinavski
, and
M.
Sawan
, “
Silicon carbide composites as fusion power reactor structural materials
,”
J. Nucl. Mater.
417
(
1–3
),
330
339
(
2011
).
5.
H.
Wang
,
W.
Zhang
,
C.
Wang
,
J.
Ma
, and
P.
Huai
, “
Molecular dynamics study of thermal transport across grain boundaries in silicon carbide nanorod
,”
Mater. Res. Express
3
(
3
),
035018
(
2016
).
6.
S.
Fujii
,
K.
Funai
,
T.
Yokoi
, and
M.
Yoshiya
, “
Grain-size dependence and anisotropy of nanoscale thermal transport in MgO
,”
Appl. Phys. Lett.
119
,
231604
(
2021
).
7.
M.
Maldovan
, “
Thermal energy transport model for macro-to-nanograin polycrystalline semiconductors
,”
J. Appl. Phys.
110
,
114310
(
2011
).
8.
B. A.
Kurbanova
,
G. K.
Mussabek
,
V. Y.
Timoshenko
,
V.
Lysenko
, and
Z. N.
Utegulov
, “
Photothermal effects and heat conduction in nanogranular silicon films
,”
Nanomaterials
11
(
9
),
2379
(
2021
).
9.
A.
Abdullaev
,
V.
Chauhan
,
B.
Muminov
,
J.
O'Connell
,
V.
Skuratov
,
M.
Khafizov
, and
Z.
Utegulov
, “
Thermal transport across nanoscale damage profile in sapphire irradiated by swift heavy ions
,”
J. Appl. Phys.
127
,
035108
(
2020
).
10.
O.
Farzadian
,
M. Z.
Dehaghani
,
K. V.
Kostas
,
A. H.
Mashhadzadeh
, and
C.
Spitas
, “
A theoretical insight into phonon heat transport in graphene/biphenylene superlattice nanoribbons: A molecular dynamic study
,”
Nanotechnology
33
(
35
),
355705
(
2022
).
11.
V.
Poborchii
,
N.
Uchida
,
Y.
Miyazaki
,
T.
Tada
,
P. I.
Geshev
,
Z. N.
Utegulov
, and
A.
Volkov
, “
A simple efficient method of nanofilm-on-bulk-substrate thermal conductivity measurement using Raman thermometry
,”
Int. J. Heat Mass Transfer
123
,
137
142
(
2018
).
12.
H.-S.
Yang
,
G.-R.
Bai
,
L.
Thompson
, and
J. A.
Eastman
, “
Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia
,”
Acta Mater.
50
(
9
),
2309
2317
(
2002
).
13.
C.-W.
Nan
and
R.
Birringer
, “
Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model
,”
Phys. Rev. B
57
(
14
),
8264
(
1998
).
14.
Y.
Li
,
J.
Yin
,
H.
Wu
,
P.
Lu
,
Y.
Yan
,
X.
Liu
,
Z.
Huang
, and
D.
Jiang
, “
High thermal conductivity in pressureless densified SiC ceramics with ultra-low contents of additives derived from novel boron–carbon sources
,”
J. Eur. Ceram. Soc.
34
(
10
),
2591
2595
(
2014
).
15.
J.-P.
Crocombette
and
L.
Gelebart
, “
Multiscale modeling of the thermal conductivity of polycrystalline silicon carbide
,”
J. Appl. Phys.
106
,
083520
(
2009
).
16.
A.
Sood
,
R.
Cheaito
,
T.
Bai
,
H.
Kwon
,
Y.
Wang
,
C.
Li
,
L.
Yates
,
T.
Bougher
,
S.
Graham
, and
M.
Asheghi
, “
Direct visualization of thermal conductivity suppression due to enhanced phonon scattering near individual grain boundaries
,”
Nano Lett.
18
(
6
),
3466
3472
(
2018
).
17.
E.
Isotta
,
S.
Jiang
,
G.
Moller
,
A.
Zevalkink
,
G. J.
Snyder
, and
O.
Balogun
, “
Microscale imaging of thermal conductivity suppression at grain boundaries
,”
Adv. Mater.
35
,
2302777
(
2023
).
18.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
19.
J.
Tersoff
, “
Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
,”
Phys. Rev. B
39
(
8
),
5566
(
1989
).
20.
J.
Tersoff
, “
Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
,”
Phys. Rev. B
41
(
5
),
3248
(
1990
).
21.
R.
Devanathan
,
T. D.
De La Rubia
, and
W. J.
Weber
, “
Displacement threshold energies in β-SiC
,”
J. Nucl. Mater.
253
(
1–3
),
47
52
(
1998
).
22.
F.
Gao
and
W. J.
Weber
, “
Empirical potential approach for defect properties in 3C-SiC
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
191
(
1–4
),
504
508
(
2002
).
23.
P.
Erhart
and
K.
Albe
, “
Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide
,”
Phys. Rev. B
71
(
3
),
035211
(
2005
).
24.
H.
Huang
,
N. M.
Ghoniem
,
J. K.
Wong
, and
M.
Baskes
, “
Molecular dynamics determination of defect energetics in beta-SiC using three representative empirical potentials
,”
Modell. Simul. Mater. Sci. Eng.
3
(
5
),
615
(
1995
).
25.
Y.
Mao
,
Y.
Li
,
Y.
Xiong
, and
W.
Xiao
, “
Point defect effects on the thermal conductivity of β-SiC by molecular dynamics simulations
,”
Comput. Mater. Sci.
152
,
300
307
(
2018
).
26.
Q.
Wang
,
N.
Gui
,
X.
Huang
,
X.
Yang
,
J.
Tu
, and
S.
Jiang
, “
The effect of temperature and cascade collision on thermal conductivity of 3C-SiC: A molecular dynamics study
,”
Int. J. Heat Mass Transfer
180
,
121822
(
2021
).
27.
P.
Hirel
, “
Atomsk: A tool for manipulating and converting atomic data files
,”
Comput. Phys. Commun.
197
,
212
219
(
2015
).
28.
M.
Wojdyr
,
S.
Khalil
,
Y.
Liu
, and
I.
Szlufarska
, “
Energetics and structure of ⟨0 0 1⟩ tilt grain boundaries in SiC
,”
Modell. Simul. Mater. Sci. Eng.
18
(
7
),
075009
(
2010
).
29.
C.
Kohler
, “
Atomistic modelling of structures of tilt grain boundaries and antiphase boundaries in β‐silicon carbide
,”
Phys. Status Solidi B
234
(
2
),
522
540
(
2002
).
30.
D.
Wolf
, “
A read-shockley model for high-angle grain boundaries
,”
Scr. Metall.
23
(
10
),
1713
1718
(
1989
).
31.
R.
Sarochawikasit
,
C.
Wang
,
P.
Kumam
,
H.
Beladi
,
T.
Okita
,
G. S.
Rohrer
, and
S.
Ratanaphan
, “
Grain boundary energy function for α iron
,”
Materialia
19
,
101186
(
2021
).
32.
J.
Hickman
and
Y.
Mishin
, “
Thermal conductivity and its relation to atomic structure for symmetrical tilt grain boundaries in silicon
,”
Phys. Rev. Mater.
4
(
3
),
033405
(
2020
).
33.
Y.
Hu
,
T.
Feng
,
X.
Gu
,
Z.
Fan
,
X.
Wang
,
M.
Lundstrom
,
S. S.
Shrestha
, and
H.
Bao
, “
Unification of nonequilibrium molecular dynamics and the mode-resolved phonon Boltzmann equation for thermal transport simulations
,”
Phys. Rev. B
101
(
15
),
155308
(
2020
).
34.
P.
Kapitza
, “
Heat transfer and superfluidity of helium II
,”
Phys. Rev.
60
(
4
),
354
(
1941
).
35.
N.
Goel
,
E.
Webb
,
A.
Oztekin
,
J.
Rickman
, and
S.
Neti
, “
Kapitza resistance at segregated boundaries in β-SiC
,”
J. Appl. Phys.
118
(
11
),
115101
(
2015
).
36.
M.
Gillan
and
M.
Dixon
, “
The calculation of thermal conductivities by perturbed molecular dynamics simulation
,”
J. Phys. C
16
(
5
),
869
(
1983
).
37.
J.
Kirkwood
and
J.
Irving
, “
The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys
18
(
6
),
817
829
(
1950
).
38.
S.
Fujii
,
T.
Yokoi
, and
M.
Yoshiya
, “
Atomistic mechanisms of thermal transport across symmetric tilt grain boundaries in MgO
,”
Acta Mater.
171
,
154
162
(
2019
).
39.
M.
Yoshiya
,
A.
Harada
,
M.
Takeuchi
,
K.
Matsunaga
, and
H.
Matsubara
, “
Perturbed molecular dynamics for calculating thermal conductivity of zirconia
,”
Mol. Simul.
30
(
13–15
),
953
961
(
2004
).
40.
D.
Spiteri
,
J.
Anaya
, and
M.
Kuball
, “
The effects of grain size and grain boundary characteristics on the thermal conductivity of nanocrystalline diamond
,”
J. Appl. Phys.
119
,
085102
(
2016
).
41.
S.
Lee
,
D.
Broido
,
K.
Esfarjani
, and
G.
Chen
, “
Hydrodynamic phonon transport in suspended graphene
,”
Nat. Commun.
6
(
1
),
6290
(
2015
).
42.
R.
Vassen
and
D.
Stöver
, “
Processing and properties of nanograin silicon carbide
,”
J. Am. Ceram. Soc.
82
(
10
),
2585
2593
(
1999
).
43.
R.
Price
, “
Thermal conductivity of neutron-irradiated pyrolytic β-silicon carbide
,”
J. Nucl. Mater.
46
(
3
),
268
272
(
1973
).
44.
M.
Rohde
, “
Reduction of the thermal conductivity of SiC by radiation damage
,”
J. Nucl. Mater.
182
,
87
92
(
1991
).
45.
R.
Taylor
,
H.
Groot
, and
J.
Ferrier
, “
Thermophysical properties of CVD SiC
,” TRPL1336Thermophysical Properties Research Laboratory Report (
School of Mechanical Engineering, Purdue University
,
1993
).
46.
Z.
Cheng
,
J.
Liang
,
K.
Kawamura
,
H.
Zhou
,
H.
Asamura
,
H.
Uratani
,
J.
Tiwari
,
S.
Graham
,
Y.
Ohno
, and
Y.
Nagai
, “
High thermal conductivity in wafer-scale cubic silicon carbide crystals
,”
Nat. Commun.
13
(
1
),
7201
(
2022
).
47.
K.
Watari
,
H.
Nakano
,
K.
Sato
,
K.
Urabe
,
K.
Ishizaki
,
S.
Cao
, and
K.
Mori
, “
Effect of grain boundaries on thermal conductivity of silicon carbide ceramic at 5 to 1300 K
,”
J. Am. Ceram. Soc.
86
(
10
),
1812
1814
(
2003
).
48.
D.
Senor
,
D.
Trimble
,
G.
Youngblood
,
G.
Newsome
,
C.
Moore
, and
J.
Woods
, “
Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics
,”
Fusion Technol.
30
(
3P2A
),
943
955
(
1996
).
49.
B.
Fu
,
Y.
Sun
,
W.
Jiang
,
F.
Wang
,
L.
Zhang
,
H.
Wang
, and
B.
Xu
, “
Determining the thermal conductivity and phonon behavior of SiC materials with quantum accuracy via deep learning interatomic potential model
,”
J. Nucl. Mater.
591
,
154897
(
2024
).
50.
A. H.
Mashhadzadeh
,
M. Z.
Dehaghani
,
F.
Molaie
,
S.
Fooladapanjeh
,
O.
Farzadian
, and
C.
Spitas
, “
A theoretical insight into the mechanical properties and phonon thermal conductivity of biphenylene network structure
,”
Comput. Mater. Sci.
214
,
111761
(
2022
).
51.
M. Z.
Dehaghani
,
O.
Farzadian
,
K. V.
Kostas
,
F.
Molaei
,
C.
Spitas
, and
A. H.
Mashhadzadeh
, “
Theoretical study of heat transfer across biphenylene/h-BN superlattice nanoribbons
,”
Physica E
144
,
115411
(
2022
).
52.
H.
Dong
,
B.
Wen
, and
R.
Melnik
, “
Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials
,”
Sci. Rep.
4
(
1
),
7037
(
2014
).
53.
S. L.
Shindé
and
J.
Goela
,
High Thermal Conductivity Materials
(
Springer
,
2006
).
You do not currently have access to this content.