Integration of NV-rich diamond with optical fibers enables guiding quantum information on the spin state of the NV color center. Diamond-functionalized optical fiber sensors have been demonstrated with impressive sub-nanotesla magnetic field sensitivities over localized magnetic field sources, but their potential for distributed sensing remains unexplored. The volumetric incorporation of diamonds into the optical fiber core allows developing fibers sensitive to the magnetic field over their entire length. Theoretically, this makes distributed optical readout of small magnetic fields possible, but does not answer questions on the addressing of the spatial coordinate, i.e., the location of the field source, nor on the performance of a sensor where the NV fluorescence is detected at one end, thereby integrating over color centers experiencing different field strength and microwave perturbation. Here, we demonstrate distributed magnetic field measurements using a step-index fiber with the optical core volumetrically functionalized with NV diamonds. A microwave antenna on a translation stage is scanned along a 13 cm long section of a straight fiber. The NV fluorescence is collected at the fiber's far end relative to the laser pump input end. Optically detected magnetic resonance spectra were recorded at the fiber output for every step of the antenna travel, revealing the magnetic field evolution along the fiber and indicating the magnetic field source location. The longitudinal distribution of the magnetic field along the fiber is detected with high accuracy. The simplicity of the demonstrated sensor would be useful for, e.g., magnetic-field mapping of photonics- and/or spintronics-based integrated circuits.

1.
Y.
Silani
,
J.
Smits
,
I.
Fescenko
,
M. W.
Malone
,
A. F.
McDowell
,
A.
Jarmola
,
P.
Kehayias
,
B.
Richards
,
N.
Mosavian
,
N.
Risto
, and
V. M.
Acosta
, “
Nuclear quadrupole resonance spectroscopy with a femtotesla diamond magnetometer
,”
Sci. Adv.
9
,
eadh3189
(
2023
).
2.
G.
Chatzidrosos
,
J. S.
Rebeirro
,
H.
Zheng
,
M.
Omar
,
A.
Brenneis
,
F. M.
Stürner
,
T.
Fuchs
,
T.
Buck
,
R.
Rölver
,
T.
Schneemann
,
P.
Blümler
,
D.
Budker
, and
A.
Wickenbrock
, “
Fiberized diamond-based vector magnetometers
,”
Front. Photonics
2
,
732748
(
2021
).
3.
S. J.
DeVience
,
L. M.
Pham
,
I.
Lovchinsky
,
A. O.
Sushkov
,
N.
Bar-Gill
,
C.
Belthangady
,
F.
Casola
,
M.
Corbett
,
H.
Zhang
,
M.
Lukin
,
H.
Park
,
A.
Yacoby
, and
R. L.
Walsworth
, “
Nanoscale NMR spectroscopy and imaging of multiple nuclear species
,”
Nat. Nanotechnol.
10
,
129
134
(
2015
).
4.
P.
Kehayias
,
A.
Jarmola
,
N.
Mosavian
,
I.
Fescenko
,
F. M.
Benito
,
A.
Laraoui
,
J.
Smits
,
L.
Bougas
,
D.
Budker
,
A.
Neumann
,
S. R. J.
Brueck
, and
V. M.
Acosta
, “
Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip
,”
Nat. Commun.
8
,
188
(
2017
).
5.
J. R.
Rabeau
,
S. T.
Huntington
,
A. D.
Greentree
, and
S.
Prawer
, “
Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding
,”
Appl. Phys. Lett.
86
,
134104
(
2005
).
6.
I. V.
Fedotov
,
L. V.
Doronina-Amitonova
,
D. A.
Sidorov-Biryukov
,
N. A.
Safronov
,
S.
Blakley
,
A. O.
Levchenko
,
S. A.
Zibrov
,
A. B.
Fedotov
,
S. Y.
Kilin
,
M. O.
Scully
,
V. L.
Velichansky
, and
A. M.
Zheltikov
, “
Fiber-optic magnetic-field imaging
,”
Opt. Lett.
39
,
6954
6957
(
2014
).
7.
X.
Liu
,
J.
Cui
,
F.
Sun
,
X.
Song
,
F.
Feng
,
J.
Wang
,
W.
Zhu
,
L.
Lou
, and
G.
Wang
, “
Fiber-integrated diamond-based magnetometer
,”
Appl. Phys. Lett.
103
,
143105
(
2013
).
8.
I. V.
Fedotov
,
L. V.
Doronina-Amitonova
,
D. A.
Sidorov-Biryukov
,
N. A.
Safronov
,
A. O.
Levchenko
,
S. A.
Zibrov
,
S.
Blakley
,
H.
Perez
,
A. V.
Akimov
,
A. B.
Fedotov
,
P.
Hemmer
,
K.
Sakoda
,
V. L.
Velichansky
,
M. O.
Scully
, and
A. M.
Zheltikov
, “
Fiber-optic magnetometry with randomly oriented spins
,”
Opt. Lett.
39
,
6755
6758
(
2014
).
9.
S. M.
Blakley
,
I. V.
Fedotov
,
J.
Becker
, and
A. M.
Zheltikov
, “
Quantum stereomagnetometry with a dualcore photonic-crystal fiber
,”
Appl. Phys. Lett.
113
,
011112
(
2018
).
10.
Y.
Tokura
,
K.
Yasuda
, and
A.
Tsukazaki
, “
Magnetic topological insulators
,”
Nat. Rev. Phys.
1
,
126
143
(
2019
).
11.
B.
Dieny
,
I. L.
Prejbeanu
,
K.
Garello
,
P.
Gambardella
,
P.
Freitas
,
R.
Lehndorff
,
W.
Raberg
,
U.
Ebels
,
S. O.
Demokritov
,
J.
Akerman
,
A.
Deac
,
P.
Pirro
,
C.
Adelmann
,
A.
Anane
,
A. V.
Chumak
,
A.
Hirohata
,
S.
Mangin
,
S. O.
Valenzuela
,
M. C.
Onbaşlı
,
M.
d'Aquino
,
G.
Prenat
,
G.
Finocchio
,
L.
Lopez-Diaz
,
R.
Chantrell
,
O.
Chubykalo-Fesenko
, and
P.
Bortolotti
, “
Opportunities and challenges for spintronics in the microelectronics industry
,”
Nat. Electron.
3
,
446
459
(
2020
).
12.
S.
Maayani
,
C.
Foy
,
D.
Englund
, and
Y.
Fink
, “
Distributed quantum fiber magnetometry
,”
Laser Photonics Rev.
13
,
1900075
(
2019
).
13.
Y.
Ruan
,
H.
Ji
,
B. C.
Johnson
,
T.
Ohshima
,
A. D.
Greentree
,
B. C.
Gibson
,
T. M.
Monro
, and
H.
Ebendorff-Heidepriem
, “
Nanodiamond in tellurite glass Part II: Practical nanodiamond-doped fibers
,”
Opt. Mat. Express
5
(
1
),
73
87
(
2015
).
14.
D.
Bai
,
M. H.
Huynh
,
D. A.
Simpson
,
P.
Reineck
,
S. A.
Vahid
,
A. D.
Greentree
,
S.
Foster
,
H.
Ebendorff-Heidepriem
, and
B. C.
Gibson
, “
Fluorescent diamond microparticle doped glass fiber for magnetic field sensing
,”
APL Mater.
8
,
081102
(
2020
).
15.
A.
Filipkowski
,
M.
Mrózek
,
G.
Stępniewski
,
J.
Kierdaszuk
,
A.
Drabińska
,
T.
Karpate
,
M.
Głowacki
,
M.
Ficek
,
W.
Gawlik
,
R.
Buczyński
,
A.
Wojciechowski
,
R.
Bogdanowicz
, and
M.
Klimczak
, “
Volumetric incorporation of NV diamond emitters in nanostructured F2 glass magneto-optical fiber probes
,”
Carbon
196
,
10
19
(
2022
).
16.
A.
Filipkowski
,
M.
Mrózek
,
G.
Stępniewski
,
M.
Głowacki
,
D.
Pysz
,
W.
Gawlik
,
R.
Buczyński
,
M.
Klimczak
, and
A.
Wojciechowski
, “
Magnetically sensitive fiber probe with nitrogen-vacancy center nanodiamonds integrated in a suspended core
,”
Opt. Express
30
(
11
),
19573
19581
(
2022
).
17.
A. J.
Newman
,
S. M.
Graham
,
A. M.
Edmonds
,
D. J.
Twitchen
,
M. L.
Markham
, and
G. W.
Morley
, “
Tensor gradiometry with a diamond magnetometer
,”
Phys. Rev. Appl.
21
,
014003
(
2024
).
18.
A. M.
Wojciechowski
,
P.
Nakonieczna
,
M.
Mrózek
,
K.
Sycz
,
A.
Kruk
,
M.
Ficek
,
M.
Głowacki
,
R.
Bogdanowicz
, and
W.
Gawlik
, “
Optical magnetometry based on nanodiamonds with nitrogen-vacancy color centers
,”
Materials
12
(
18
),
2951
(
2019
).
19.
K.
Sasaki
,
Y.
Monnai
,
S.
Saijo
,
R.
Fujita
,
H.
Watanabe
,
J.
Ishi-Hayase
,
K. M.
Itoh
, and
E.
Abe
, “
Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond
,”
Rev. Sci. Instrum.
87
,
053904
(
2016
).
20.
A.
Dreau
,
M.
Lesik
,
L.
Rondin
,
P.
Spinicelli
,
O.
Arcizet
,
J.-F.
Roch
, and
V.
Jacques
, “
Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity
,”
Phys. Rev. B
84
,
195204
(
2011
).
21.
J. M.
Taylor
,
P.
Cappellaro
,
L.
Childress
,
L.
Jiang
,
D.
Budker
,
P. R.
Hemmer
,
A.
Yacoby
,
R.
Walsworth
, and
M. D.
Lukin
, “
High-sensitivity diamond magnetometer with nanoscale resolution
,”
Nat. Phys.
4
,
810
816
(
2008
).
22.
J.
Shao
,
Y.
Luo
,
J.
Chen
,
H.
Huang
,
G.
Liu
,
L.
Chen
,
Z.
Chen
, and
Y.
Chen
, “
High-sensitivity optical-fiber magnetic sensor based on diamond and magnetic flux concentrators
,”
Opt. Express
31
(
9
),
14685
14693
(
2023
).
23.
G.
Stępniewski
,
M.
Mrózek
,
A.
Filipkowski
,
M. J.
Głowacki
,
D.
Pysz
,
W.
Gawlik
,
R.
Buczyński
,
A.
Wojciechowski
, and
M.
Klimczak
, “
ODMR-based and microwave-free magnetic field gradiometry with nanodiamond-doped anti-resonant hollow core fibers
,”
Sens. Actuators, A
355
,
114321
(
2023
).
24.
G.
Stępniewski
,
P.
Hänzi
,
A.
Filipkowski
,
M.
Janik
,
M.
Mrózek
,
Y.
Stepanenko
,
R.
Bogdanowicz
,
V.
Romano
,
A.
Heidt
,
R.
Buczyński
, and
M.
Klimczak
, “
Nonlinearity shaping in nanostructured glass-diamond hybrid materials for optical fiber preforms
,”
Carbon
215
,
118465
(
2023
).
25.
E. A.
Lima
,
A.
Irimia
, and
J. P.
Wikswo
, “
The magnetic inverse problem
,” in
The SQUID Handbook: Applications of SQUIDs and SQUID Systems
, edited by
J.
Clarke
and
A. I.
Braginski
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
2006
).
26.
B. K.
Malia
,
Y.
Wu
,
J.
Martínez-Rincón
, and
M. A.
Kasevich
, “
Distributed quantum sensing with mode-entangled spin-squeezed atomic states
,”
Nature
612
,
661
665
(
2022
).
27.
Y.
Chen
,
Q.
Lin
,
H.
Cheng
,
H.
Huang
,
J.
Shao
,
Y.
Ye
,
G.-S.
Liu
,
L.
Chen
,
Y.
Luo
, and
Z.
Chen
, “
Nanodiamond-based optical-fiber quantum probe for magnetic field and biological sensing
,”
ACS Sens.
7
(
12
),
3660
3670
(
2022
).
28.
J.
Kulbacka
,
R.
Kasztelanic
,
M.
Kotulska
,
D.
Pysz
,
G.
Stępniewski
,
R.
Stępień
,
J.
Saczko
,
D.
Miklavčič
, and
R.
Buczyński
, “
Ultrathin glass fiber microprobe for electroporation of arbitrary selected cell groups
,”
Bioelectrochemistry
135
,
107545
(
2020
).
29.
I.
Miron
,
K.
Garello
,
G.
Gaudin
,
P.-J.
Zermatten
,
M. V.
Costache
,
S.
Auffret
,
S.
Bandiera
,
B.
Rodmacq
,
A.
Schuhl
, and
P.
Gambardella
, “
Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
,”
Nature
476
,
189
193
(
2011
).
You do not currently have access to this content.