Plasmonic antennas with helical geometry can convert linearly polarized dipole radiation into purely circularly polarized far-fields, and vice versa. Besides large Purcell enhancements, they possess a wide tunability due to the geometry dependence of their resonant modes. Here, the coupling of a dipole emitter embedded in a thin film to plasmonic single and double helices is numerically studied. Using a higher-order finite element method (FEM), the wavelength dependent Purcell enhancement of a dipole with different positions and orientations is calculated and the far-fields with respect to their chirality and radiation patterns are analyzed. Both single and double helices demonstrate highly directional and circularly polarized far-fields for resonant excitation but with significantly improved directional radiation for the case of double helices.

1.
F.
Flamini
and
N.
Spagnolo
, “
Photonic quantum information processing: A review
,”
Rep. Prog. Phys.
82
,
016001
(
2019
).
2.
G.
Moody
,
V. J.
Sorger
,
D. J.
Blumenthal
,
P. W.
Juodawlkis
,
W.
Loh
,
C.
Sorace-Agaskar
,
A. E.
Jones
,
K. C.
Balram
,
J. C. F.
Matthews
,
A.
Laing
,
M.
Davanco
,
L.
Chang
,
J. E.
Bowers
,
N.
Quack
,
C.
Galland
,
I.
Aharonovich
,
M. A.
Wolff
,
C.
Schuck
,
N.
Sinclair
,
M.
Lončar
,
T.
Komljenovic
,
D.
Weld
,
S.
Mookherjea
,
S.
Buckley
,
M.
Radulaski
,
S.
Reitzenstein
,
B.
Pingault
,
B.
Machielse
,
D.
Mukhopadhyay
,
A.
Akimov
,
A.
Zheltikov
,
G. S.
Agarwal
,
K.
Srinivasan
,
J.
Lu
,
H. X.
Tang
,
W.
Jiang
,
T. P.
McKenna
,
A. H.
Safavi-Naeini
,
S.
Steinhauer
,
A. W.
Elshaari
,
V.
Zwiller
,
P. S.
Davids
,
N.
Martinez
,
M.
Gehl
,
J.
Chiaverini
,
K. K.
Mehta
,
J.
Romero
,
N. B.
Lingaraju
,
A. M.
Weiner
,
D.
Peace
,
R.
Cernansky
,
M.
Lobino
,
E.
Diamanti
,
L. T.
Vidarte
, and
R. M.
Camacho
, “
2022 Roadmap on integrated quantum photonics
,”
J. Phys. Photonics
4
,
012501
(
2022
).
3.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer
,
2007
).
4.
E. M.
Purcell
, “
Spontaneous emission probabilities at radio frequencies
,”
Phys. Rev.
69
,
681
(
1946
).
5.
K. F.
Lee
,
Principles of Antenna Theory
(
Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH
,
1984
).
6.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L. T.
Perelman
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
, “
Single molecule detection using surface-enhanced Raman scattering (SERS)
,”
Phys. Rev. Lett.
78
,
1667
(
1997
).
7.
S.
Kühn
,
U.
Håkanson
,
L.
Rogobete
, and
V.
Sandoghdar
, “
Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna
,”
Phys. Rev. Lett.
97
,
017402
(
2006
).
8.
A.
Kinkhabwala
,
Z.
Yu
,
S.
Fan
,
Y.
Avlasevich
,
K.
Müllen
, and
W. E.
Moerner
, “
Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna
,”
Nat. Photonics
3
,
654
(
2009
).
9.
L.
Novotny
and
N.
van Hulst
, “
Antennas for light
,”
Nat. Photonics
5
,
83
(
2011
).
10.
P.
Biagioni
,
J.-S.
Huang
, and
B.
Hecht
, “
Nanoantennas for visible and infrared radiation
,”
Rep. Prog. Phys.
75
,
024402
(
2012
).
11.
A. F.
Koenderink
, “
Single-photon nanoantennas
,”
ACS Photonics
4
,
710
(
2017
).
12.
T.
Feichtner
,
S.
Christiansen
, and
B.
Hecht
, “
Mode matching for optical antennas
,”
Phys. Rev. Lett.
119
,
217401
(
2017
).
13.
T. H.
Taminiau
,
F. D.
Stefani
,
F. B.
Segerink
, and
N. F. v
Hulst
, “
Optical antennas direct single-molecule emission
,”
Nat. Photonics
2
,
234
(
2008
).
14.
A. G.
Curto
,
G.
Volpe
,
T. H.
Taminiau
,
M. P.
Kreuzer
,
R.
Quidant
, and
N. F.
van Hulst
, “
Unidirectional emission of a quantum dot coupled to a nanoantenna
,”
Science
329
,
930
(
2010
).
15.
J. K.
Gansel
,
M.
Thiel
,
M. S.
Rill
,
M.
Decker
,
K.
Bade
,
V.
Saile
,
G.
von Freymann
,
S.
Linden
, and
M.
Wegener
, “
Gold helix photonic metamaterial as broadband circular polarizer
,”
Science
325
,
1513
(
2009
).
16.
K.
Höflich
,
T.
Feichtner
,
E.
Hansjürgen
,
C.
Haverkamp
,
H.
Kollmann
,
C.
Lienau
, and
M.
Silies
, “
Resonant behavior of a single plasmonic helix
,”
Optica
6
,
1098
(
2019
).
17.
I.
Fernandez-Corbaton
,
M.
Fruhnert
, and
C.
Rockstuhl
, “
Objects of maximum electromagnetic chirality
,”
Phys. Rev. X
6
,
031013
(
2016
).
18.
X. G.
Santiago
,
M.
Hammerschmidt
,
J.
Sachs
,
S.
Burger
,
H.
Kwon
,
M.
Knöller
,
T.
Arens
,
P.
Fischer
,
I.
Fernandez-Corbaton
, and
C.
Rockstuhl
, “
Toward maximally electromagnetically chiral scatterers at optical frequencies
,”
ACS Photonics
9
,
1954
(
2022
).
19.
M.
Wang
,
R.
Salut
,
H.
Lu
,
M.-A.
Suarez
,
N.
Martin
, and
T.
Grosjean
, “
Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas
,”
Light
8
,
76
(
2019
).
20.
Y.
Kan
,
S. K. H.
Andersen
,
F.
Ding
,
S.
Kumar
,
C.
Zhao
, and
S. I.
Bozhevolnyi
, “
Metasurface-enabled generation of circularly polarized single photons
,”
Adv. Mater.
32
,
1907832
(
2020
).
21.
C.
Li
,
J.
Jang
,
T.
Badloe
,
T.
Yang
,
J.
Kim
,
J.
Kim
,
M.
Nguyen
,
S. A.
Maier
,
J.
Rho
,
H.
Ren
, and
I.
Aharonovich
, “
Arbitrarily structured quantum emission with a multifunctional metalens
,”
eLight
3
,
19
(
2023
).
22.
I.
Aharonovich
,
J.-P.
Tetienne
, and
M.
Toth
, “
Quantum emitters in hexagonal boron nitride
,”
Nano Lett.
22
,
9227
(
2022
).
23.
A.
Kuzyk
,
R.
Schreiber
,
Z.
Fan
,
G.
Pardatscher
,
E.-M.
Roller
,
A.
Högele
,
F. C.
Simmel
,
A. O.
Govorov
, and
T.
Liedl
, “
DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response
,”
Nature
483
,
311
(
2012
).
24.
C.
Song
,
M. G.
Blaber
,
G.
Zhao
,
P.
Zhang
,
H. C.
Fry
,
G. C.
Schatz
, and
N. L.
Rosi
, “
Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures
,”
Nano Lett.
13
,
3256
3261
(
2013
).
25.
J. G.
Gibbs
,
A. G.
Mark
,
S.
Eslami
, and
P.
Fischer
, “
Plasmonic nanohelix metamaterials with tailorable giant circular dichroism
,”
Appl. Phys. Lett.
103
,
213101
(
2013
).
26.
A. G.
Mark
,
J. G.
Gibbs
,
T.-C.
Lee
, and
P.
Fischer
, “
Hybrid nanocolloids with programmed three-dimensional shape and material composition
,”
Nat. Mater
12
,
802
807
(
2013
).
27.
S.
Maruo
,
O.
Nakamura
, and
S.
Kawata
, “
Three-dimensional microfabrication with two-photon-absorbed photopolymerization
,”
Opt. Lett.
22
,
132
134
(
1997
).
28.
J.
Kaschke
and
M.
Wegener
, “
Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography
,”
Opt. Lett.
40
,
3986
3989
(
2015
).
29.
A.
Ishikawa
,
T.
Tanaka
, and
S.
Kawata
, “
Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye
,”
Appl. Phys. Lett.
89
,
113102
(
2006
).
30.
L.
Liu
,
D.
Yang
,
W.
Wan
,
H.
Yang
,
Q.
Gong
, and
Y.
Li
, “
Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction
,”
Nanophotonics
8
,
1087
1093
(
2019
).
31.
M.
Esposito
,
V.
Tasco
,
F.
Todisco
,
M.
Cuscunà
,
A.
Benedetti
,
D.
Sanvitto
, and
A.
Passaseo
, “
Triple-helical nanowires by tomographic rotatory growth for chiral photonics
,”
Nat. Commun.
6
,
6484
(
2015
).
32.
R.
Córdoba
,
D.
Mailly
,
R. O.
Rezaev
,
E. I.
Smirnova
,
O. G.
Schmidt
,
V. M.
Fomin
,
U.
Zeitler
,
I.
Guillamón
,
H.
Suderow
, and
J. M.
De Teresa
, “
Three-dimensional superconducting nanohelices grown by he+-focused-ion-beam direct writing
,”
Nano Lett.
19
,
8597
8604
(
2019
).
33.
C.
Haverkamp
,
K.
Höflich
,
S.
Jäckle
,
A.
Manzoni
, and
S.
Christiansen
, “
Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits
,”
Nanotechnology
28
,
055303
(
2017
).
34.
I.
Utke
,
P.
Hoffmann
, and
J.
Melngailis
, “
Gas-assisted focused electron beam and ion beam processing and fabrication
,”
J. Vac. Sci. Technol. B
26
,
1197
1276
(
2008
).
35.
R.
Winkler
,
F.-P.
Schmidt
,
U.
Haselmann
,
J. D.
Fowlkes
,
B. B.
Lewis
,
G.
Kothleitner
,
P. D.
Rack
, and
H.
Plank
, “
Direct-write 3D nanoprinting of plasmonic structures
,”
ACS Appl. Mater. Interfaces
9
,
8233
8240
(
2017
).
36.
P. B.
Johnson
and
R. W.
Christy
, “
Optical constants of the noble metals
,”
Phys. Rev. B
6
,
4370
(
1972
).
37.
J.
Pomplun
,
S.
Burger
,
L.
Zschiedrich
, and
F.
Schmidt
, “
Adaptive finite element method for simulation of optical nano structures
,”
Phys. Status Solidi B
244
,
3419
(
2007
).
38.
L.
Zschiedrich
,
H. J.
Greiner
,
S.
Burger
, and
F.
Schmidt
, “
Numerical analysis of nanostructures for enhanced light extraction from OLEDs
,”
Proc. SPIE
8641
,
86410B
(
2013
).
39.
P.
Anger
,
P.
Bharadwaj
, and
L.
Novotny
, “
Enhancement and quenching of single-molecule fluorescence
,”
Phys. Rev. Lett.
96
,
113002
(
2006
).
40.
F.
Marquier
,
C.
Sauvan
, and
J.-J.
Greffet
, “
Revisiting quantum optics with surface plasmons and plasmonic resonators
,”
ACS Photonics
4
,
2091
(
2017
).
41.
P.
Gutsche
,
L. V.
Poulikakos
,
M.
Hammerschmidt
,
S.
Burger
, and
F.
Schmidt
, “
Time-harmonic optical chirality in inhomogeneous space
,”
Proc. SPIE
9756
,
97560X
(
2016
).
42.
L.
Novotny
, “
Effective wavelength scaling for optical antennas
,”
Phys. Rev. Lett.
98
,
266802
(
2007
).
43.
R. J.
Potton
, “
Reciprocity in optics
,”
Rep. Prog. Phys.
67
,
717
(
2004
).
44.
P.
Woźniak
,
I.
De Leon
,
K.
Höflich
,
C.
Haverkamp
,
S.
Christiansen
,
G.
Leuchs
, and
P.
Banzer
, “
Chiroptical response of a single plasmonic nanohelix
,”
Opt. Express
26
,
19275
(
2018
).
45.
J.
Petschulat
,
D.
Cialla
,
N.
Janunts
,
C.
Rockstuhl
,
U.
Hübner
,
R.
Möller
,
H.
Schneidewind
,
R.
Mattheis
,
J.
Popp
,
A.
Tünnermann
,
F.
Lederer
, and
T.
Pertsch
, “
Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering
,”
Opt. Express
18
,
4184
(
2010
).
46.
V. G.
Kravets
,
A. V.
Kabashin
,
W. L.
Barnes
, and
A. N.
Grigorenko
, “
Plasmonic surface lattice resonances: A review of properties and applications
,”
Chem. Rev.
118
,
5912
(
2018
).
47.
V. V.
Klimov
,
M.
Ducloy
, and
V. S.
Letokhov
, “
Spontaneous emission of an atom in the presence of nanobodies
,”
Quantum Electron.
31
,
569
(
2001
).
48.
E. R.
Encina
,
E. M.
Perassi
, and
E. A.
Coronado
, “
Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires
,”
J. Phys. Chem. A
113
,
4489
(
2009
).
49.
A. L.
Exarhos
,
D. A.
Hopper
,
R. R.
Grote
,
A.
Alkauskas
, and
L. C.
Bassett
, “
Optical signatures of quantum emitters in suspended hexagonal boron nitride
,”
ACS Nano
11
,
3328
(
2017
).
50.
H.
Takashima
,
H.
Maruya
,
K.
Ishihara
,
T.
Tashima
,
K.
Shimazaki
,
A. W.
Schell
,
T. T.
Tran
,
I.
Aharonovich
, and
S.
Takeuchi
, “
Determination of the dipole orientation of single defects in hexagonal boron nitride
,”
ACS Photonics
7
,
2056
(
2020
).
51.
M. I.
Stockman
, “
Nanoplasmonics: Past, present, and glimpse into future
,”
Opt. Express
19
,
22029
22106
(
2011
).
52.
A.
Moradi
, “
Plasmon hybridization in parallel nano-wire systems
,”
Phys. Plasmas
18
,
064508
(
2011
).
53.
J.
Lin
,
J. P. B.
Mueller
,
Q.
Wang
,
G.
Yuan
,
N.
Antoniou
,
X.-C.
Yuan
, and
F.
Capasso
, “
Polarization-controlled tunable directional coupling of surface plasmon polaritons
,”
Science
340
,
331
(
2013
).
54.
J.-S.
Huang
,
T.
Feichtner
,
P.
Biagioni
, and
B.
Hecht
, “
Impedance matching and emission properties of nanoantennas in an optical nanocircuit
,”
Nano Lett.
9
,
1897
(
2009
).
55.
L.
Kuen
,
L.
Löffler
,
A.
Tsarapkin
,
L.
Zschiedrich
,
T.
Feichtner
,
S.
Burger
, and
K.
Höflich
(
2024
). “Source code and simulation results: Chiral and directional optical emission from a dipole source coupled to a helical plasmonic antenna,”
Zenodo
.
56.
S.-Y.
Lee
,
T.-Y.
Jeong
,
S.
Jung
, and
K.-J.
Yee
, “
Refractive index dispersion of hexagonal boron nitride in the visible and near-infrared
,”
Phys. Status Solidi B
256
,
1800417
(
2019
).
57.
See http://www.schott.com for “
SCHOTT Zemax catalog 2017-01-20b
,” SCHOTT glass data sheets.
You do not currently have access to this content.