Light-harvesting studies in donor–acceptor nanohybrid systems based on all-environmentally friendly quantum dots (QDs) are necessary to realize their applications in energy and medical research. Here, we demonstrate an efficient Förster resonance energy transfer (FRET) process in an electrostatically bound all-QD based assembly comprised of indium phosphide/zinc sulfide (InP/ZnS) QDs as both the donor and the acceptor. A perfect control on the speed of nucleation and growth steps, along with appropriate surface functionalization with oppositely charged ligands, enabled an electrostatically bound all-QD donor–acceptor nanohybrid assembly comprising of green- and red-emitting InP/ZnS QDs. Detailed spectroscopic studies revealed the importance of electrostatic attraction in accomplishing an efficient FRET process (∼75%) from donor [+] G-InP/ZnS QDs to acceptor [−] R-InP/ZnS QDs. Further, solid-state studies helped in visualizing the distance-dependent nature of the FRET process at a fixed donor–acceptor ratio. The all-InP QD containing donor–acceptor nanohybrid assembly developed here could find applications in other light-harvesting studies as well, including photovoltaics and photocatalysis.

1.
L. E.
Brus
, “
Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state
,”
J. Chem. Phys.
80
,
4403
4409
(
1984
).
2.
A. R.
Clapp
,
I. L.
Medintz
, and
H.
Mattoussi
, “
Förster resonance energy transfer investigations using quantum-dot fluorophores
,”
ChemPhysChem
7
,
47
57
(
2006
).
3.
J. M.
Pietryga
,
Y.-S.
Park
,
J.
Lim
et al, “
Spectroscopic and device aspects of nanocrystal quantum dots
,”
Chem. Rev.
116
,
10513
10622
(
2016
).
4.
N.
Hildebrandt
,
C. M.
Spillmann
,
W. R.
Algar
et al, “
Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications
,”
Chem. Rev.
117
,
536
711
(
2017
).
5.
IN.
Chakraborty
,
P.
Roy
,
A.
Rao
et al, “
The unconventional role of surface ligands in dictating the light harvesting properties of quantum dots
,”
J. Mater. Chem. A
9
,
7422
7457
(
2021
).
6.
U.
Resch-Genger
,
M.
Grabolle
,
S.
Cavaliere-Jaricot
et al, “
Quantum dots versus organic dyes as fluorescent labels
,”
Nat. Methods
5
,
763
775
(
2008
).
7.
V.
Biju
,
T.
Itoh
, and
M.
Ishikawa
, “
Delivering quantum dots to cells: Bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging
,”
Chem. Soc. Rev.
39
,
3031
3056
(
2010
).
8.
P. V.
Kamat
, “
Quantum dot solar cells. The next big thing in photovoltaics
,”
J. Phys. Chem. Lett.
4
,
908
918
(
2013
).
9.
S-i
Yamashita
,
M.
Hamada
,
S.
Nakanishi
et al, “
Auger ionization beats photo-oxidation of semiconductor quantum dots: Extended stability of single-molecule photoluminescence
,”
Angew. Chem., Int. Ed.
54
,
3892
3896
(
2015
).
10.
S.
Ghosh
,
S.
Mandal
,
S.
Mukherjee
et al, “
Near-unity photoluminescence quantum yield and highly suppressed blinking in a toxic-metal-free quantum dot
,”
J. Phys. Chem. Lett.
12
,
1426
1431
(
2021
).
11.
M.
Hariharan
and
G. D.
Scholes
, “
Virtual issue on triplet excitons
,”
J. Phys. Chem. Lett.
13
,
8365
8368
(
2022
).
12.
R.
Wargnier
,
A. V.
Baranov
,
V. G.
Maslov
et al, “
Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot−nanogold assemblies
,”
Nano Lett.
4
,
451
457
(
2004
).
13.
M.
Wu
,
P.
Mukherjee
,
D. N.
Lamont
et al, “
Electron transfer and fluorescence quenching of nanoparticle assemblies
,”
J. Phys. Chem. C
114
,
5751
5759
(
2010
).
14.
A.
Wolf
,
V.
Lesnyak
,
N.
Gaponik
et al, “
Quantum-dot-based (aero)gels: Control of the optical properties
,”
J. Phys. Chem. Lett.
3
,
2188
2193
(
2012
).
15.
N.
Gaponik
,
A.-K.
Herrmann
, and
A.
Eychmüller
, “
Colloidal nanocrystal-based gels and aerogels: Material aspects and application perspectives
,”
J. Phys. Chem. Lett.
3
,
8
17
(
2012
).
16.
S.
Sarkar
,
A. R.
Maity
,
N. S.
Karan
et al, “
Fluorescence energy transfer from doped to undoped quantum dots
,”
J. Phys. Chem. C
117
,
21988
21994
(
2013
).
17.
B. M.
Graff
,
B. P.
Bloom
,
E.
Wierzbinski
et al, “
Electron transfer in nanoparticle dyads assembled on a colloidal template
,”
J. Am. Chem. Soc.
138
,
13260
13270
(
2016
).
18.
J. B.
Hoffman
,
R.
Alam
, and
P. V.
Kamat
, “
Why surface chemistry matters for QD–QD resonance energy transfer
,”
ACS Energy Lett.
2
,
391
396
(
2017
).
19.
M. S.
Kodaimati
,
S.
Lian
,
G. C.
Schatz
et al, “
Energy transfer-enhanced photocatalytic reduction of proton within quantum dot light-harvesting-catalyst assemblies
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
8290
8295
(
2018
).
20.
J.
Hottechamps
,
T.
Noblet
,
C.
Méthivier
et al, “
All-quantum dot based Förster resonant energy transfer: Key parameters for high-efficiency biosensing
,”
Nanoscale
15
,
2614
2623
(
2023
).
21.
P.
Roy
,
G.
Devatha
,
S.
Roy
et al, “
Electrostatically driven resonance energy transfer in an all-quantum dot based donor–acceptor system
,”
J. Phys. Chem. Lett.
11
,
5354
5360
(
2020
).
22.
R.
Xie
,
D.
Battaglia
, and
X.
Peng
, “
Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared
,”
J. Am. Chem. Soc.
129
,
15432
15433
(
2007
).
23.
M. D.
Tessier
,
D.
Dupont
,
K.
De Nolf
et al, “
Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots
,”
Chem. Mater.
27
,
4893
4898
(
2015
).
24.
X.
Tong
and
Z. M.
Wang
,
Core/Shell Quantum Dots Synthesis, Properties and Devices
, Lecture Notes in Nanoscale Science and Technology (
Springer
,
Cham
,
2020
).
25.
S.
Sarkar
,
R.
Bose
,
S.
Jana
et al, “
Doped semiconductor nanocrystals and organic dyes: An efficient and greener FRET system
,”
J. Phys. Chem. Lett.
1
,
636
640
(
2010
).
26.
A.
Thomas
,
P. V.
Nair
, and
K. G.
Thomas
, “
InP quantum dots: An environmentally friendly material with resonance energy transfer requisites
,”
J. Phys. Chem. C
118
,
3838
3845
(
2014
).
27.
G.
Devatha
,
A.
Rao
,
S.
Roy
et al, “
Förster resonance energy transfer regulated multicolor photopatterning from single quantum dot nanohybrid films
,”
ACS Energy Lett.
4
,
1710
1716
(
2019
).
28.
C. K.
De
,
D.
Roy
,
S.
Mandal
et al, “
Suppressed blinking under normal air atmosphere in toxic-metal-free, small sized, InP-based core/alloy-shell/shell quantum dots
,”
J. Phys. Chem. Lett.
10
,
4330
4338
(
2019
).
29.
G.
Devatha
,
P.
Roy
,
A.
Rao
et al, “
Multicolor luminescent patterning via photoregulation of electron and energy transfer processes in quantum dots
,”
J. Phys. Chem. Lett.
11
,
4099
4106
(
2020
).
30.
J.
Sobhanan
,
J. V.
Rival
,
A.
Anas
et al, “
Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity
,”
Adv. Drug Delivery Rev.
197
,
114830
(
2023
).
31.
B.
Manoj
,
D.
Rajan
, and
K. G.
Thomas
, “
InP quantum dots: Stoichiometry regulates carrier dynamics
,”
J. Chem. Phys.
158
,
174706
(
2023
).
32.
L.
Li
and
P.
Reiss
, “
One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection
,”
J. Am. Chem. Soc.
130
,
11588
11589
(
2008
).
33.
W.
Zhang
,
S.
Ding
,
W.
Zhuang
et al, “
InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes
,”
Adv. Funct. Mater.
30
,
2005303
(
2020
).
34.
P.
Roy
,
M.
Virmani
, and
P. P.
Pillai
, “
Blue-emitting InP quantum dots participate in an efficient resonance energy transfer process in water
,”
Chem. Sci.
14
,
5167
5176
(
2023
).
35.
P.
Roy
,
A. S.
Sury
, and
P. P.
Pillai
, “
Resonance energy transfer in electrostatically assembled donor-acceptor system based on blue-emitting InP quantum dots
,”
Chem. Phys. Impact
7
,
100334
(
2023
).
36.
D. V.
Talapin
,
A. L.
Rogach
,
I.
Mekis
et al, “
Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals
,”
Colloids Surf. A
202
,
145
154
(
2002
).
37.
G.
Devatha
,
S.
Roy
,
A.
Rao
et al, “
Electrostatically driven resonance energy transfer in “cationic” biocompatible indium phosphide quantum dots
,”
Chem. Sci.
8
,
3879
3884
(
2017
).
38.
Y.
Taniguchi
,
M. A. B.
Sazali
,
Y.
Kobayashi
et al, “
Programmed self-assembly of branched nanocrystals with an amphiphilic surface pattern
,”
ACS Nano
11
,
9312
9320
(
2017
).
39.
J. A. M.
Xavier
,
G.
Devatha
,
S.
Roy
et al, “
Electrostatically regulated photoinduced electron transfer in “cationic” eco-friendly CuInS2/ZnS quantum dots in water
,”
J. Mater. Chem. A
6
,
22248
22255
(
2018
).
40.
V.
Jain
,
S.
Roy
,
P.
Roy
et al, “
When design meets function: The prodigious role of surface ligands in regulating nanoparticle chemistry
,”
Chem. Mater.
34
,
7579
7597
(
2022
).
41.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
(
Springer US
,
New York
,
1999
).
42.
R. T.
Cheriya
,
K.
Nagarajan
, and
M.
Hariharan
, “
Single-component organic light-harvesting red luminescent crystal
,”
J. Phys. Chem. C
117
,
3240
3248
(
2013
).
43.
R.
Sethy
,
J.
Kumar
,
R.
Métivier
et al, “
Enantioselective light harvesting with perylenediimide guests on self-assembled chiral naphthalenediimide nanofibers
,”
Angew. Chem., Int. Ed.
56
,
15053
15057
(
2017
).
44.
E.
Mutlugun
,
P. L.
Hernandez-Martinez
,
C.
Eroglu
et al, “
Large-area (Over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots
,”
Nano Lett.
12
,
3986
3993
(
2012
).
You do not currently have access to this content.