The valence band (VB) structure of an Al0.5TiZrPdCuNi high-entropy alloy (HEA) obtained using x-ray photoelectron spectroscopy has been compared to that recently calculated by Odbadrakh et al. [J. Appl. Phys. 126, 095104 (2019)]. Both the experimental and theoretical VBs show a split-band structure, typical for alloys consisting of the early (TE) and late (TL) transition metals. Accordingly, several electronic structure (ES) properties of this alloy, both in the glassy and crystalline state, are compared with those of similar TE-TL alloys. The comparison shows a strong effect of alloying with Al on the density of states at the Fermi level, N(EF), and on the magnetic susceptibility of Al0.5TiZrPdCuNi HEA, similar to that in conventional glassy alloys, such as Zr-Cu-Al ones. Despite some similarity in the theoretical and experimental density of states of the VBs, there are significant differences between them, which should be taken into account in any future studies of ES in HEAs and other compositionally complex alloys.

1.
L.
Ma
,
L.
Wang
,
T.
Zhang
, and
A.
Inoue
, “
Bulk glass formation of Ti-Zr-Hf-Cu-M (M = Fe, Co, Ni) alloys
,”
Met. Trans.
43
,
277
280
(
2002
).
2.
B.
Cantor
,
K. B.
Kim
, and
P. J.
Warren
, “
Novel multicomponent amorphous alloys
,”
Mater. Sci. Forum
386–388
,
27
32
(
2002
).
3.
J. W.
Yeh
,
S. K.
Chen
,
S. J.
Lin
,
J. Y.
Gan
,
T. S.
Chin
,
T. T.
Shun
,
C. H.
Tsau
, and
S. Y.
Chang
, “
Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
,”
Adv. Eng. Mater.
6
,
299
303
(
2004
).
4.
B.
Cantor
,
I. T. H.
Chang
,
P.
Knight
, and
A. J. B.
Vincent
, “
Microstructural development in equiatomic multicomponent alloys
,”
Mater. Sci. Eng. A
375–377
,
213
218
(
2004
).
5.
M. C.
Gao
,
P. K.
Liaw
, and
D. B.
Miracle
, “
Focus issue: Fundamental understanding and applications of high-entropy alloys
,”
J. Mater. Res.
33
,
2853
(
2018
).
6.
D. B.
Miracle
, “
High entropy alloys as a bold step forward in alloy development
,”
Nat. Commun.
10
,
1805
(
2019
).
7.
Z.
Wu
,
H.
Bei
,
G. M.
Pharr
, and
E. P.
George
, “
Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures
,”
Acta Mater.
81
,
428
441
(
2014
).
8.
P.
Pervan
,
V.
Mikšić Trontl
,
I. A.
Figueroa
,
T.
Valla
,
I.
Pletikosić
, and
E.
Babić
, “
Compositionally complex alloys: Some insights from photoemission spectroscopy
,”
Materials
16
(
4
),
1486
(
2023
).
9.
E. J.
Pickering
and
N. G.
Jones
, “
High-entropy alloys: A critical assessment of their founding principles and future prospects
,”
Int. Mater. Rev.
61
,
183
202
(
2016
).
10.
D. B.
Miracle
and
O. N.
Senkov
, “
A critical review of high entropy alloys and related concepts
,”
Acta Mater.
122
,
448
511
(
2017
).
11.
E. P.
George
,
D.
Raabe
, and
R. O.
Ritchie
, “
High-entropy alloys
,”
Nat. Rev. Mater.
4
,
515
534
(
2019
).
12.
Y.
Ikeda
,
B.
Grabowski
, and
F.
Körmann
, “
Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys
,”
Mater. Charact.
147
,
464
511
(
2019
).
13.
C.
Niu
,
C. R.
LaRosa
,
J.
Miao
,
M. J.
Mills
, and
M.
Ghazisaeidi
, “
Magnetically-driven phase transformation strengthening in high entropy alloys
,”
Nat. Commun.
9
,
1363
(
2018
).
14.
Z.
Yang
,
J.
Sun
,
S.
Lu
, and
L.
Vitos
, “
A comparative study of solid-solution strengthening in Cr-Co-Ni complex concentrated alloys: The effect of magnetism
,”
Comput. Mater. Sci.
192
,
110408
(
2021
).
15.
K.
Jin
,
B. C.
Sales
,
G. M.
Stocks
,
G. D.
Samolyuk
,
M.
Daene
,
W. J.
Weber
,
Y.
Zhang
, and
H.
Bei
, “
Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity
,”
Sci. Rep.
6
,
20159
(
2016
).
16.
L.
Sun
and
R. J.
Cava
, “
High-entropy alloy superconductors: Status, opportunities, and challenges
,”
Phys. Rev. Mater.
3
,
090301
(
2019
).
17.
S.
Mu
,
G. D.
Samolyuk
,
S.
Wimmer
,
M. C.
Troparevsky
,
S. N.
Khan
,
S.
Mankovsky
,
H.
Ebert
, and
G. M.
Stocks
, “
Uncovering electron scattering mechanisms in NiFeCoCrMn derived concentrated solid solution and high entropy alloys
,”
npj Comput. Mater.
5
,
1
(
2019
).
18.
L.
Qi
, “
Effects of electronic structures on mechanical properties of transition metals and alloys
,”
Comput. Mater. Sci.
163
,
11
16
(
2019
).
19.
R.
Ristić
,
K.
Zadro
,
D.
Pajić
,
I. A.
Figueroa
, and
E.
Babić
, “
On the origin of bulk glass forming ability in Cu-Hf, Zr alloys
,”
EPL
114
,
17006
(
2016
).
20.
E.
Babić
,
R.
Ristić
,
I. A.
Figueroa
,
D.
Pajić
,
Ž.
Skoko
, and
K.
Zadro
, “
Electronic structure and glass forming ability in early and late transition metal alloys
,”
Philos. Mag.
98
,
693
709
(
2018
).
21.
Y.
Zhang
,
G. M.
Stocks
,
K.
Jin
,
C.
Lu
,
H.
Bei
,
B. C.
Sales
,
L.
Wang
,
L. K.
Béland
,
R. E.
Stoller
,
G. D.
Samolyuk
et al, “
Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys
,”
Nat. Commun.
6
,
8736
(
2015
).
22.
T.
Zuo
,
M. C.
Gao
,
L.
Ouyang
,
X.
Yang
,
Y.
Cheng
,
R.
Feng
,
S.
Chen
,
P. K.
Liaw
,
J. A.
Hawk
, and
Y.
Zhang
, “
Tailoring magnetic behavior of CoFeMnNiX (X=Al, Cr, Ga and Sn) high entropy alloys by metal doping
,”
Acta Mater.
130
,
10
18
(
2017
).
23.
Z.
Wu
,
M. C.
Troparevsky
,
J. F.
Ga
,
J. R.
Morris
,
G. M.
Stocks
, and
H.
Bei
, “
Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys
,”
Curr. Opin. Solid State Mater. Sci.
21
,
267
284
(
2017
).
24.
S.
Huang
,
E.
Holmström
,
O.
Eriksson
, and
L.
Vitos
, “
Mapping the magnetic transition temperatures for medium- and high-entropy alloys
,”
Intermetallics
95
,
80
84
(
2018
).
25.
K.
Biljaković
,
G.
Remenyi
,
I. A.
Figueroa
,
R.
Ristić
,
D.
Pajić
,
A.
Kuršumović
,
D.
Starešinić
,
K.
Zadro
, and
E.
Babić
, “
Electronic structure and properties of (TiZrNbCu)1-xNix high entropy amorphous alloys
,”
J. Alloys Compd.
695
,
2661
2668
(
2017
).
26.
E.
Babić
,
D.
Pajić
,
K.
Zadro
,
K.
Biljaković
,
V.
Mikšić Trontl
,
P.
Pervan
,
D.
Starešinić
,
I. A.
Figueroa
,
A.
Kuršumović
,
S.
Michalik
,
A.
Lachova
,
G.
Remenyi
, and
R.
Ristić
, “
Structure property relationship in (TiZrNbCu)1-xNix metallic glasses
,”
J. Mater. Res.
33
,
3170
3183
(
2018
).
27.
R.
Ristić
,
I. A.
Figueroa
,
A.
Lachova
,
S.
Michalik
,
V.
Mikšić Trontl
,
P.
Pervan
,
K.
Zadro
,
D.
Pajić
, and
E.
Babić
, “
Transition from high-entropy to Cu-based (TiZrNbNi)1−xCux metallic glasses
,”
J. Appl. Phys.
126
,
154105
(
2019
).
28.
E.
Babić
,
Đ.
Drobac
,
I. A.
Figueroa
,
M.
Laurent-Brocq
,
Ž.
Marohnić
,
V.
Mikšić Trontl
,
D.
Pajić
,
L.
Perrière
,
P.
Pervan
,
G.
Remenyi
,
R.
Ristić
,
A.
Salčinović Fetić
,
D.
Starešinić
, and
K.
Zadro
, “
Transition from high-entropy to conventional alloys: Which are better?
,”
Materials
14
,
5824
(
2021
).
29.
V. L.
Moruzzi
,
P.
Oelhafen
,
A. R.
Williams
,
R.
Lapka
,
H.-J.
Güntherodt
, and
J.
Kübler
, “
Theoretical and experimental electronic structure of Zr-based transition-metal glasses containing Fe, Co, Ni, Cu, Rh, and Pd
,”
Phys. Rev. B
27
(
3
),
2049
2054
(
1983
).
30.
M.
Kuveždić
,
E.
Tafra
,
M.
Basletić
,
R.
Ristić
,
P.
Pervan
,
V.
Mikšić Trontl
,
I. A.
Figueroa
, and
E.
Babić
, “
Change of electronic properties on transition from high-entropy to Ni-rich (TiZrNbCu)1−xNix alloys
,”
J. Non-Cryst. Solids
531
,
119865
(
2020
).
31.
R.
Ristić
,
I. A.
Figueroa
,
A.
Salčinović Fetić
,
K.
Zadro
,
V.
Mikšić Trontl
,
P.
Pervan
, and
E.
Babić
, “
Transition from high-entropy to conventional (TiZrNbCu)1-xCox metallic glasses
,”
J. Appl. Phys.
130
,
195102
(
2021
).
32.
Kh.
Odbadrakh
,
L.
Enkhtor
,
Ts.
Amartaivan
,
D. M.
Nicholson
,
G. M.
Stocks
, and
T.
Egami
, “
Electronic structure and atomic level complexity in Al0.5TiZrPdCuNi high-entropy alloy in glass phase
,”
J. Appl. Phys.
126
,
095104
(
2019
).
33.
A.
Takeuchi
,
J.
Wang
,
N.
Chen
,
W.
Zhang
,
Y.
Yokoyama
,
K.
Yubuta
, and
S.
Zhu
, “
Al0.5TiZrPdCuNi high-entropy (H-E) alloy developed through Ti20Zr20Pd20Cu20Ni20 H-E glassy alloy comprising inter-transition metals
,”
Mater. Trans.
54
,
776
782
(
2013
).
34.
T.
Nagase
,
A.
Takeuchi
,
K.
Amiya
, and
T.
Egami
, “
Solid state amorphization of metastable Al0.5TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy
,”
Mater. Chem. Phys.
210
,
291
300
(
2018
).
35.
M.
Wencka
,
M.
Krnel
,
A.
Jelen
,
S.
Vrtnik
,
J.
Luzar
,
P.
Koželj
,
D.
Gačnik
,
A.
Meden
,
Q.
Hu
,
C.
Wang
,
S.
Guo
, and
J.
Dolinšek
, “
Electronic transport properties of the Al0.5TiZrPdCuNi alloy in the high-entropy alloy and metallic glass forms
,”
Sci. Rep.
12
,
2271
(
2022
).
36.
A.
Cunliffe
,
J.
Plummer
,
I. A.
Figueroa
, and
I.
Todd
, “
Glass formation in a high entropy alloy system by design
,”
Intermetallics
23
,
204
207
(
2012
).
37.
Y. H.
Meng
,
F. H.
Duan
,
J.
Pan
, and
Y.
Li
, “
Phase stability of B2-ordered ZrTiHfCuNiFe high entropy alloy
,”
Intermetallics
111
,
106515
(
2019
).
38.
F.
Wang
,
A.
Inoue
,
F. L.
Kong
,
Y.
Han
,
S. L.
Zhu
,
E.
Shalaan
, and
F.
Al-Marouki
, “
Formation, thermal stability and mechanical properties of high entropy (Fe,Co,Ni,Cr,Mo)-B amorphous alloys
,”
J. Alloys Compd.
732
,
637
645
(
2018
).
39.
E.
Babić
,
Ž.
Marohnić
,
F.
Hajdu
,
M.
Tegze
, and
I.
Vincze
, “
Resistivity minimum in amorphous and crystalline Fe40Ni40B20 alloys
,”
Solid State Commun.
29
(
3
),
175
179
(
1979
).
40.
U.
Köster
and
U.
Herold
, “
Crystallization of metallic glasses
,” in
Glassy Metals I: Ionic Structure, Electronic Transport, and Crystallization, Topics in Applied Physics
, edited by
H. J.
Güntherodt
and
H.
Beck
(
Springer-Verlag
,
Berlin
,
1981
), pp.
225
259
.
41.
I. A.
Figueroa
,
R.
Ristić
,
A.
Kuršumović
,
K.
Biljaković
,
D.
Starešinić
,
D.
Pajić
,
G.
Remenyi
, and
E.
Babić
, “
Properties of (TiZrNbCu)1-xNix metallic glasses
,”
J. Alloys Compd.
745
,
455
459
(
2018
).
42.
R.
Ristić
,
J. R.
Cooper
,
K.
Zadro
,
D.
Pajić
,
J.
Ivkov
, and
E.
Babić
, “
Ideal solution behaviour of glassy Cu–Ti, Zr, Hf alloys and properties of amorphous copper
,”
J. Alloys Compd.
621
,
136
145
(
2015
).
43.
R.
Ristić
and
E.
Babić
, “
Comment on ‘Mixing entropy enhanced energy states in metallic glasses
,’ ”
Chin. Phys. Lett.
39
,
119901
(
2022
).
44.
A.
Amamou
, “
d Band structure and alloying effects in crystalline and amorphous Zr-Co and Zr-Ni
,”
Solid State Commun.
33
,
1029
1034
(
1980
).
45.
See https://vuo.elettra.eu/services/elements/WebElements.html for “
Atomic calculation of photoionization cross-sections and asymmetry parameters
.”
46.
V. M.
Trontl
,
I.
Pletikosić
,
M.
Milun
,
P.
Pervan
,
P.
Lazić
,
D.
Šokčević
, and
R.
Brako
, “
Experimental and ab initio study of the structural and electronic properties of subnanometer thick Ag films on Pd (111)
,”
Phys. Rev. B
72
,
235418
(
2005
).
47.
V.
Johanek
,
P.
Stara
, and
V.
Matolin
, “
Role of Pd–Al bimetallic interaction in CO adsorption and catalytic properties of bulk PdAl alloy: XPS, ISS, TDS, and SIMS study
,”
Surf. Sci.
507–510
,
92
98
(
2002
).
48.
R.
He
,
L.
Yang
,
Y.
Zhang
et al, “
A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance
,”
Energy Storage Mater.
58
,
287
298
(
2023
).
49.
Y.
Li
,
P.
Yu
, and
H. Y.
Bai
, “
Study on the boson peak in bulk metallic glasses
,”
J. Appl. Phys.
104
,
013520
(
2008
).
50.
J.
Ivkov
,
E.
Babić
, and
R. L.
Jacobs
, “
Hall effect and electronic structure of glassy Zr 3d alloys
,”
J. Phys. F: Met. Phys.
14
,
L53
L57
(
1984
).
51.
I.
Bakonyi
,
H.
Ebert
, and
A. I.
Liechtstein
, “
Electronic structure and magnetic susceptibility of the different structural modifications of Ti, Zr, and Hf metals
,”
Phys. Rev. B
48
(
11
),
7841
(
1993
).
52.
R.
Ristić
,
E.
Babić
,
K.
Šaub
, and
M.
Miljak
, “
Electrical and magnetic properties of amorphous Zr100-x Cux alloys
,”
Fizika
15
,
363
373
(
1983
).
53.
R.
Ristić
,
M.
Stubičar
, and
E.
Babić
, “
Correlation between mechanical, thermal and electronic properties in Zr–Ni, Cu amorphous alloys
,”
Philos. Mag.
87
,
5629
5637
(
2007
).
54.
H. J.
Park
,
Y. S.
Kim
,
S. C.
Mun
,
S. H.
Hong
,
W.-M.
Wang
, and
K. B.
Kim
, “
Designing of Fe-containing (Ti33Zr33Hf33)-(Ni50Cu50) high entropy alloys developed by equiatomic substitution: Phase evolution and mechanical properties
,”
J. Mater. Res. Technol.
9
,
7732
7739
(
2020
).
You do not currently have access to this content.