Having shown early promise, free-space optical (FSO) communications face formidable challenges in the age of information explosion. The ever-growing demand for greater channel communication capacity is one of the challenges. The inter-channel crosstalk, which severely degrades the quality of transmitted information, creates another roadblock in the way of efficient implementation of FSO communication systems. Here, we advance theoretically and realize experimentally a potentially high-capacity FSO protocol that enables high-fidelity transfer of an image or set of images through a complex environment. In our protocol, we complement random light structuring at the transmitter with a deep learning image classification platform at the receiver. Multiplexing unique, independent, mutually orthogonal degrees of freedom available to structured random light can potentially significantly boost the channel communication capacity of our protocol without introducing any deleterious crosstalk. Specifically, we show how one can multiplex the degrees of freedom associated with the source coherence radius and a spatial position of a beamlet within an array of structured random beams to greatly enhance the capacity of our communication link. The superb resilience of structured random light to environmental noise, as well as extreme efficiency of deep learning networks at classifying images, guarantees high-fidelity image transfer within the framework of our protocol.

1.
Y.
Okawachi
,
B. Y.
Kim
,
M.
Lipson
, and
A. L.
Gaeta
, “
Chip-scale frequency combs for data communications in computing systems
,”
Optica
10
(
8
),
977
995
(
2023
).
2.
I.
Khader
,
H.
Bergeron
,
L. C.
Sinclair
,
W. C.
Swann
,
N. R.
Newbury
, and
J. D.
Deschênes
, “
Time synchronization over a free-space optical communication channel
,”
Optica
5
(
12
),
1542
1548
(
2018
).
3.
K.
Zou
,
K.
Pang
,
H.
Song
,
J.
Fan
,
Z.
Zhao
,
H.
Song
,
R.
Zhang
,
H.
Zhou
,
A.
Minoofar
,
C.
Liu
,
X.
Su
,
N.
Hu
,
A.
McClung
,
M.
Torfeh
,
A.
Arbabi
,
M.
Tur
, and
A. E.
Willner
, “
High-capacity free-space optical communications using wavelength- and mode-division-multiplexing in the mid-infrared region
,”
Nat. Commun.
13
,
7662
(
2022
).
4.
Z.
Huang
,
X.
Hu
,
Q.
Li
,
X.
Jin
,
B.
Xu
,
D.
Wang
,
X.
Liu
,
T.
Zhang
,
Z.
Zhang
,
G.
Chen
,
C.
Li
, and
D.
Li
, “
Phase-shifted quadrature-phase demodulation based on a multi-longitudinal mode laser self-mixing sensor for displacement measurement
,”
Measurement
206
,
112323
(
2023
).
5.
B.
Stern
,
H.
Chen
,
K.
Kim
, and
N. K.
Fontaine
, “
Large dispersion silicon Bragg grating for full-field 40-GBd QPSK phase retrieval receiver
,”
J. Lightwave Technol.
40
(
22
),
7358
7363
(
2022
).
6.
Z.
Duan
,
H.
Chen
, and
X.
Lin
, “
Optical multi-task learning using multi-wavelength diffractive deep neural networks
,”
Nanophotonics
12
(
5
),
893
903
(
2023
).
7.
C.
Huang
,
D.
Wang
,
W.
Zhang
,
B.
Wang
,
A. N.
Tait
,
T. F.
de Lima
,
B. J.
Shastri
, and
P. R.
Prucnal
, “
High-capacity space-division multiplexing communications with silicon photonic blind source separation
,”
J. Lightwave Technol.
40
(
6
),
1617
1632
(
2022
).
8.
S. A.
Derevyanko
and
J. E.
Prilepsky
, “
Channel model for the dual-polarization b-modulated nonlinear frequency-division multiplexing optical transmission systems
,”
Opt. Express
31
(
12
),
19686
19702
(
2023
).
9.
A. E.
Willner
and
C.
Liu
, “
Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links
,”
Nanophotonics
10
(
1
),
225
233
(
2020
).
10.
J.
Wang
,
J.
Liu
,
S.
Li
,
Y.
Zhao
,
J.
Du
, and
L.
Zhu
, “
Orbital angular momentum and beyond in free space optical communications
,”
Nanophotonics
11
(
4
),
645
646
(
2022
).
11.
J.
Li
,
Q.
Yang
,
X.
Dai
,
C.
Lim
, and
A.
Nirmalathas
, “
Joint beam-and-probabilistic shaping scheme based on orbital angular momentum mode for indoor optical wireless communications
,”
J. Lightwave Technol.
41
(
20
),
6488
6495
(
2023
).
12.
H.
Cao
,
A. P.
Mosk
, and
S.
Rotter
, “
Shaping the propagation of light in complex media
,”
Nat. Phys.
18
,
994
1007
(
2022
).
13.
Z.
Xu
,
G.
Xu
, and
Z.
Zheng
, “
BER and channel capacity performance of an FSO communication system over atmospheric turbulence with different types of noise
,”
Sensors
21
(
10
),
3454
(
2021
).
14.
R.
Zhang
,
N.
Hu
,
H.
Zhou
,
K.
Zou
,
X.
Su
,
Y.
Zhou
,
H.
Song
,
K.
Pang
,
H.
Song
,
A.
Minoofar
,
Z.
Zhao
,
C.
Liu
,
K.
Manukyan
,
A.
Almaiman
,
B.
Lynn
,
R. W.
Boyd
,
M.
Tur
, and
A. E.
Willner
, “
Turbulence-resilient pilot-assisted self-coherent free-space optical communications using automatic optoelectronic mixing of many states
,”
Nat. Photonics
15
,
743
750
(
2021
).
15.
M.
Ghalaii
and
S.
Pirandola
, “
Quantum communications in a moderate-to-strong turbulent space
,”
Commun. Phys.
5
,
38
(
2022
).
16.
H.
Zhou
,
X.
Su
,
Y.
Duan
,
H.
Song
,
K.
Zou
,
R.
Zhang
,
H.
Song
,
N.
Hu
,
M.
Tur
, and
A. E.
Willner
, “
Atmospheric turbulence strength distribution along a propagation path probed by longitudinally structured optical beams
,”
Nat. Commun.
14
,
4701
(
2023
).
17.
Z.
Zhu
,
M.
Janasik
,
A.
Fyffe
,
D.
Hay
,
Y.
Zhou
,
B.
Kantor
,
T.
Winder
,
R. W.
Boyd
,
G.
Leuchs
, and
Z.
Shi
, “
Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams
,”
Nat. Commun.
12
(
1
),
1666
(
2021
).
18.
L.
Gong
,
Q.
Zhao
,
H.
Zhang
,
X.
Hu
,
K.
Huang
,
J.
Yang
, and
Y.
Li
, “
Optical orbital-angular-momentum-multiplexed data transmission under high scattering
,”
Light
8
(
1
),
27
(
2019
).
19.
S.
Li
and
J.
Wang
, “
Adaptive free-space optical communications through turbulence using self-healing Bessel beams
,”
Sci. Rep.
7
(
1
),
43233
(
2017
).
20.
Y.
Shen
,
S.
Pidishety
,
I.
Nape
, and
A.
Dudley
, “
Self-healing of structured light: A review
,”
J. Opt.
24
(
10
),
103001
(
2022
).
21.
F.
Wang
,
X.
Liu
, and
Y.
Cai
, “
Propagation of partially coherent beam in turbulent atmosphere: A review
,”
Prog. Electromagn. Res.
150
,
123
143
(
2015
).
22.
F.
Wang
,
Y.
Chen
,
X.
Liu
,
Y.
Cai
, and
S. A.
Ponomarenko
, “
Self-reconstruction of partially coherent light beams scattered by opaque obstacles
,”
Opt. Express
24
,
23735
23746
(
2016
).
23.
Z.
Xu
,
X.
Liu
,
Y.
Chen
,
F.
Wang
,
L.
Liu
,
Y. E.
Monfared
,
S. A.
Ponomarenko
,
Y.
Cai
, and
C.
Liang
, “
Self-healing properties of Hermite-Gaussian correlated Schell-model beams
,”
Opt. Express
28
,
2828
2837
(
2020
).
24.
Z.
Xu
,
X.
Liu
,
Y.
Cai
,
S. A.
Ponomarenko
, and
C.
Liang
, “
Structurally stable beams in the turbulent atmosphere: Dark and antidark beams on incoherent background [Invited]
,”
J. Opt. Soc. Am. A
39
(
12
),
C51
C57
(
2022
).
25.
S. A.
Ponomarenko
and
E.
Wolf
, “
The spectral degree of coherence of fully spatially coherent electromagnetic beams
,”
Opt. Commun.
227
,
73
74
(
2003
).
26.
L.
Mandel
and
E.
Wolf
,
Optical Coherence and Quantum Optics
(
Cambridge University Press
,
Cambridge
,
1995
).
27.
S. A.
Ponomarenko
and
E.
Wolf
, “
Coherence properties of light in Young's interference pattern formed with partially coherent light
,”
Opt. Commun.
170
,
1
8
(
1999
).
28.
X.
Liu
,
S. A.
Ponomarenko
,
F.
Wang
,
Y.
Cai
, and
C.
Liang
, “
Incoherent mode division multiplexing for high-security information encryption
,” arXiv:2304.06455 (
2023
).
29.
S. A.
Ponomarenko
, “
Twist phase and classical entanglement of partially coherent light
,”
Opt. Lett.
46
,
5958
5961
(
2021
).
30.
W.
Liu
,
D.
Ma
,
Z.
Li
,
H.
Cheng
,
D.-Y.
Choi
,
J.
Tian
, and
S.
Chen
, “
Aberration-corrected three-dimensional positioning with a single-shot metalens array
,”
Optica
7
,
1706
(
2020
).
31.
G.
Hinton
,
L.
Deng
,
D.
Yu
,
G. E.
Dahl
,
A.
Mohamed
,
N.
Jaitly
,
A.
Senior
,
V.
Vanhoucke
,
P.
Nguyen
,
T. N.
Sainath
, and
B.
Kingsbury
, “
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
,”
IEEE Signal Process. Mag.
29
,
82
97
(
2012
).
32.
D.
Silver
,
A.
Huang
,
C. J.
Maddison
,
A.
Guez
,
L.
Sifre
,
G.
Van Den Driessche
,
J.
Schrittwieser
,
I.
Antonoglou
,
V.
Panneershelvam
,
M.
Lanctot
,
S.
Dieleman
,
D.
Grewe
,
J.
Nham
,
N.
Kalchbrenner
,
I.
Sutskever
,
T.
Lillicrap
,
M.
Leach
,
K.
Kavukcuoglu
,
T.
Graepel
, and
D.
Hassabis
, “
Mastering the game of Go with deep neural networks and tree search
,”
Nature
529
,
484
489
(
2016
).
33.
W.
Ma
,
F.
Cheng
, and
Y.
Liu
, “
Deep-learning-enabled on-demand design of chiral metamaterials
,”
ACS Nano
12
,
6326
(
2018
).
34.
Z.
Liu
,
D.
Zhu
,
S. P.
Rodrigues
,
K.-T.
Lee
, and
W.
Cai
, “
Generative model for the inverse design of metasurfaces
,”
Nano Lett.
18
,
6570
(
2018
).
35.
Z.
Liu
,
S.
Yan
,
H.
Liu
, and
X.
Chen
, “
Superhigh-resolution recognition of optical vortex states assisted by a deep-learning method
,”
Phys. Rev. Lett.
123
,
183902
(
2019
).
36.
Q.
Zhang
,
C.
Liu
,
X.
Wan
,
L.
Zhang
,
S.
Liu
,
Y.
Yang
, and
T. J.
Cui
, “
Machine-learning designs of anisotropic digital coding metasurfaces
,”
Adv. Theor. Simul.
2
,
1800132
(
2019
).
37.
A.
Krizhevsky
,
I.
Sutskever
, and
G. E.
Hinton
, “
ImageNet classification with deep convolutional neural networks
,” in
25th International Conference on Neural Information Processing Systems
(NIPS,
2012
), Vol.
1
, p.
1097
.
38.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Deep residual learning for image recognition
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(
IEEE
,
2016
), pp.
770
778
.
39.
F.
Gori
and
M.
Santarsiero
, “
Devising genuine spatial correlation functions
,”
Opt. Lett.
32
(
24
),
3531
3533
(
2007
).
40.
C.
Liang
,
R.
Khosravi
,
X.
Liang
,
B.
Kacerovská
, and
Y. E.
Monfared
, “
Standard and elegant higher-order Laguerre-Gaussian correlated Schell-model beams
,”
J. Opt.
21
(
8
),
085607
(
2019
).
41.
O.
Russakovsky
,
J.
Deng
,
H.
Su
,
J.
Krause
,
S.
Satheesh
,
S.
Ma
,
Z.
Huang
,
A.
Karpathy
,
A.
Khosla
,
M.
Bernstein
,
A. C.
Berg
, and
L.
Fei-Fei
, “
ImageNet large scale visual recognition challenge
,”
Int. J. Comput. Vis.
115
,
211
252
(
2015
).
42.
Y.
Chen
,
S.
Zhang
, and
R.
Song
, “
Scoring your prediction on unseen data
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(
IEEE
,
2023
), pp.
3278
3287
.
You do not currently have access to this content.