In superconducting qubit systems, microwave crosstalk among the qubit control lines is a prominent source of errors for gate operations, particularly when implemented simultaneously in a multiqubit system. In this work, we present an experimental study of crosstalk mitigation for the case of single-qubit gate operation, which involves the universal U3 gate decomposition into two X π / 2 gates and three virtual Z gates. We demonstrate that by optimizing the virtual Z gate parameters, the crosstalk can be effectively mitigated, with the single-qubit gate fidelity recovered to the level comparable to that in the absence of crosstalk.

1.
P.
Krantz
,
M.
Kjaergaard
,
F.
Yan
et al, “
A quantum engineer's guide to superconducting qubits
,”
Appl. Phys. Rev.
6
,
021318
(
2019
).
2.
P.
Roushan
,
C.
Neill
,
J.
Tangpanitanon
et al, “
Spectroscopic signatures of localization with interacting photons in superconducting qubits
,”
Science
358
,
1175
(
2017
).
3.
K.
Xu
,
Z.-H.
Sun
,
W.
Liu
et al, “
Probing dynamical phase transitions with a superconducting quantum simulator
,”
Sci. Adv.
6
(
25
),
eaba4935
(
2020
).
4.
F. S.
Chen
,
Z. H.
Sun
,
M.
Gong
et al, “
Observation of strong and weak thermalization in a superconducting quantum processor
,”
Phys. Rev. Lett.
127
,
020602
(
2021
).
5.
J.
Braumüller
,
A. H.
Karamlou
,
Y.
Yanay
et al, “
Probing quantum information propagation with out-of-time-ordered correlators
,”
Nat. Phys.
18
,
172
(
2022
).
6.
A. H.
Karamlou
,
J.
Braumüller
,
Y.
Yanay
et al, “
Quantum transport and localization in 1d and 2d tight-binding lattices
,”
npj Quantum Inf.
8
,
35
(
2022
).
7.
S. K.
Zhao
,
Z. Y.
Ge
,
Z. C.
Xiang
et al, “
Probing operator spreading via Floquet engineering in a superconducting circuit
,”
Phys. Rev. Lett.
129
,
160602
(
2022
).
8.
F.
Arute
,
K.
Arya
,
R.
Babbush
et al, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
(
2019
).
9.
Y.
Wu
,
W. S.
Bao
,
S.
Cao
et al, “
Strong quantum computational advantage using a superconducting quantum processor
,”
Phys. Rev. Lett.
127
,
180501
(
2021
).
10.
R.
Barends
,
J.
Kelly
,
A.
Megrant
et al, “
Superconducting quantum circuits at the surface code threshold for fault tolerance
,”
Nature
508
,
500
(
2014
).
11.
J. M.
Chow
,
J. M.
Gambetta
,
A. D.
Córcoles
et al, “
Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits
,”
Phys. Rev. Lett.
109
,
060501
(
2012
).
12.
A. G.
Fowler
,
M.
Mariantoni
,
J. M.
Martinis
et al, “
Surface codes: Towards practical large-scale quantum computation
,”
Phys. Rev. A
86
,
032324
(
2012
).
13.
P.
Zhao
,
K. H.
Linghu
,
Z. Y.
Li
et al, “
Quantum crosstalk analysis for simultaneous gate operations on superconducting qubits
,”
PRX Quantum
3
,
020301
(
2022
).
14.
W.
Nuerbolati
,
Z. K.
Han
,
J.
Chu
et al, “
Canceling microwave crosstalk with fixed-frequency qubits
,”
Appl. Phys. Lett.
120
,
174001
(
2022
).
15.
Y.
Sung
,
L.
Ding
,
J.
Braumüller
et al, “
Realization of high-fidelity CZ and ZZ-Free iSWAP gates with a tunable coupler
,”
Phys. Rev. X
11
,
021058
(
2021
).
16.
M.
Malekakhlagh
and
E.
Magesan
, “
Mitigating off-resonant error in the cross-resonance gate
,”
Phys. Rev. A
105
,
012602
(
2022
).
17.
R. X.
Wang
,
P.
Zhao
,
Y. R.
Jin
et al, “
Control and mitigation of microwave crosstalk effect with superconducting qubits
,”
Appl. Phys. Lett.
121
,
152602
(
2022
).
18.
K. X.
Wei
,
E.
Magesan
,
I.
Lauer
et al, “
Hamiltonian engineering with multicolor drives for fast entangling gates and quantum crosstalk cancellation
,”
Phys. Rev. Lett.
129
,
060501
(
2022
).
19.
D. C.
McKay
,
C. J.
Wood
,
S.
Sheldon
et al, “
Efficient Z gates for quantum computing
,”
Phys. Rev. A
96
,
022330
(
2017
).
20.
F.
Motzoi
,
J. M.
Gambetta
,
P.
Rebentrost
et al, “
Simple pulses for elimination of leakage in weakly nonlinear qubits
,”
Phys. Rev. Lett.
103
,
110501
(
2009
).
21.
Z. J.
Chen
,
J. L.
Kelly
,
C.
Quintana
et al, “
Measuring and suppressing quantum state leakage in a superconducting qubit
,”
Phys. Rev. Lett.
116
,
020501
(
2016
).
22.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2010
).
23.
The calculations are performed considering two energy levels for the qubit and using the QuTiP toolbox, see:
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, “
QuTiP: An open-source Python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
183
,
1760
(
2012
);
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
QuTiP 2: A Python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
184
,
1234
(
2013
).
24.
P.
Zhao
,
R. X.
Wang
,
M. J.
Hu
et al, “
Baseband control of superconducting qubits with shared microwave drives
,”
Phys. Rev. Appl.
19
,
054050
(
2023
).
25.
P.
Shi
,
J.
Yuan
,
F.
Yan
et al, “
Multiplexed control scheme for scalable quantum information processing with superconducting qubits
,” arXiv:2312.06911 (
2023
).
You do not currently have access to this content.