In recent years, the application of positron emission tomography (PET) for the dose range verification of proton therapy has been proposed. However, the positron distribution is determined by the nuclear reaction cross section; hence, PET may not accurately reflect the dose range primarily influenced by ionization. Consequently, a proton dose range verification system based on scattered proton measurements has been suggested owing to the similarity in the reaction cross section between Rutherford scattering and ionization. While previous investigations have only verified the feasibility of dose range estimation through simple simulations, the objective of this study is to demonstrate this feasibility through experimental investigation. In this paper, we established an experimental framework for capturing scattered protons and introduced an algorithm that compares measured signal patterns with a reference database to estimate the dose range. A therapeutic beam was irradiated onto the abdominal region of a human phantom, and scattered protons were measured using scintillation detectors placed on the phantom surface. Consequently, the dose range was estimated with error margins of 4.22 ± 3.68 and 0.60 ± 1.03 mm along the beam axis and perpendicular directions to the Bragg peak, respectively. While providing the same level of Bragg peak positioning accuracy as conventional methods, our system features small size, cost-effectiveness, and system simplicity. One notable limitation of our method is the challenge in achieving precise detector positioning, which is crucial for accurate dose range estimation. Future research will focus on improving detector-position accuracy and exploring advanced algorithms for signal analysis to further refine dose range estimations.

1.
R. R.
Wilson
, “
Radiological use of fast protons
,”
Radiology
47
,
487
491
(
1946
).
2.
C.
Tobias
,
J.
Lawrence
,
J.
Born
,
R.
McCombs
,
J.
Roberts
,
H.
Anger
,
B.
Low Beer
, and
C.
Huggins
, “
Pituitary irradiation with high-energy proton beams a preliminary report
,”
Cancer Res.
18
,
121
134
(
1958
).
3.
S.
Vynckier
,
S.
Derreumaux
,
F.
Richard
,
A.
Bol
,
C.
Michel
, and
A.
Wambersie
, “
Is it possible to verify directly a proton-treatment plan using positron emission tomography?
,”
Radiother. Oncol.
26
,
275
277
(
1993
).
4.
U.
Oelfke
,
G. K. Y.
Lam
, and
M. S.
Atkins
, “
Proton dose monitoring with PET: Quantitative studies in Lucite
,”
Phys. Med. Biol.
41
,
177
(
1996
).
5.
K.
Parodi
and
W.
Enghardt
, “
Potential application of PET in quality assurance of proton therapy
,”
Phys. Med. Biol.
45
,
N151
(
2000
).
6.
Y.
Hishikawa
,
K.
Kagawa
,
M.
Murakami
,
H.
Sakai
,
T.
Akagi
, and
M.
Abe
, “
Usefulness of positron-emission tomographic images after proton therapy
,”
Int. J. Radiat. Oncol., Biol., Phys.
53
,
1388
1391
(
2002
).
7.
T.
Nishio
,
T.
Sato
,
H.
Kitamura
,
K.
Murakami
, and
T.
Ogino
, “
Distributions of decayed nuclei generated in the and targets by the target nuclear fragment reaction using therapeutic MONO and SOBP proton beam
,”
Med. Phys.
32
,
1070
1082
(
2005
).
8.
K.
Parodi
,
H.
Paganetti
,
E.
Cascio
,
J. B.
Flanz
,
A. A.
Bonab
,
N. M.
Alpert
,
K.
Lohmann
, and
T.
Bortfeld
, “
PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants
,”
Med. Phys.
34
,
419
435
(
2007
).
9.
A. R.
Smith
, “
Vision: Proton therapy
,”
Med. Phys.
36
,
556
568
(
2009
).
10.
H.
Paganetti
, “
Range uncertainties in proton therapy and the role of Monte Carlo simulations
,”
Phys. Med. Biol.
57
,
R99
(
2012
).
11.
A. C.
Knopf
and
A.
Lomax
, “
In vivo proton range verification: A review
,”
Phys. Med. Biol.
58
,
R131
(
2013
).
12.
X.
Zhu
,
S.
España
,
J.
Daartz
,
N.
Liebsch
,
J.
Ouyang
,
H.
Paganetti
,
T. R.
Bortfeld
, and
G. E.
Fakhri
, “
Monitoring proton radiation therapy with in-room PET imaging
,”
Phys. Med. Biol.
56
,
4041
(
2011
).
13.
C. H.
Min
,
X.
Zhu
,
B. A.
Winey
,
K.
Grogg
,
M.
Testa
,
G. E.
Fakhri
,
T. R.
Bortfeld
,
H.
Paganetti
, and
H. A.
Shih
, “
Clinical application of in-room positron emission tomography for in vivo treatment monitoring in proton radiation therapy
,”
Int. J. Radiat. Oncol., Biol., Phys.
86
,
183
189
(
2013
).
14.
W.
Enghardt
,
P.
Crespo
,
F.
Fiedler
,
R.
Hinz
,
K.
Parodi
,
J.
Pawelke
, and
F.
Poenisch
, “
Charged hadron tumour therapy monitoring by means of PET
,”
Nucl. Instrum. Methods Phys. Res., Sect.
525
,
284
288
(
2004
).
15.
T.
Nishio
,
A.
Miyatake
,
T.
Ogino
,
K.
Nakagawa
,
N.
Saijo
, and
H.
Esumi
, “
The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy
,”
Int. J. Radiat. Oncol., Biol., Phys.
76
,
277
286
(
2010
).
16.
H.
Tashima
,
E.
Yoshida
,
N.
Inadama
,
F.
Nishikido
,
Y.
Nakajima
,
H.
Wakizaka
,
T.
Shinaji
,
M.
Nitta
,
S.
Kinouchi
,
M.
Suga
et al, “
Development of a small single-ring OpenPET prototype with a novel transformable architecture
,”
Phys. Med. Biol.
61
,
1795
(
2016
).
17.
E.
Yoshida
,
H.
Tashima
,
T.
Shinaji
,
K.
Shimizu
,
H.
Wakizaka
,
A.
Mohammadi
,
F.
Nishikido
, and
T.
Yamaya
, “
Development of a whole-body dual ring OpenPET for in-beam PET
,”
IEEE Trans. Radiat. Plasma Med. Sci.
1
,
293
300
(
2017
).
18.
C. H.
Min
,
X.
Zhu
,
K.
Grogg
,
G.
El Fakhri
,
B.
Winey
, and
H.
Paganetti
, “
A recommendation on how to analyze in-room PET for in vivo proton range verification using a distal PET surface method
,”
Technol. Cancer Res. Treat.
14
,
320
325
(
2015
).
19.
C. H.
Min
,
C. H.
Kim
,
M. Y.
Youn
, and
J. W.
Kim
, “
Prompt gamma measurements for locating the dose falloff region in the proton therapy
,”
Appl. Phys. Lett.
89
,
183517
(
2006
).
20.
J.
Polf
,
S.
Peterson
,
G.
Ciangaru
,
M.
Gillin
, and
S.
Beddar
, “
Prompt gamma-ray emission from biological tissues during proton irradiation: A preliminary study
,”
Phys. Med. Biol.
54
,
731
(
2009
).
21.
I.
Perali
,
A.
Celani
,
L.
Bombelli
,
C.
Fiorini
,
F.
Camera
,
E.
Clementel
,
S.
Henrotin
,
G.
Janssens
,
D.
Prieels
,
F.
Roellinghoff
et al, “
Prompt gamma imaging of proton pencil beams at clinical dose rate
,”
Phys. Med. Biol.
59
,
5849
(
2014
).
22.
C.
Richter
,
G.
Pausch
,
S.
Barczyk
,
M.
Priegnitz
,
I.
Keitz
,
J.
Thiele
,
J.
Smeets
,
F. V.
Stappen
,
L.
Bombelli
,
C.
Fiorini
,
L.
Hotoiu
,
I.
Perali
,
D.
Prieels
,
W.
Enghardt
, and
M.
Baumann
, “
First clinical application of a prompt gamma based in vivo proton range verification system
,”
Radiother. Oncol.
118
,
232
237
(
2016
).
23.
Y.
Xie
,
E. H.
Bentefour
,
G.
Janssens
,
J.
Smeets
,
F.
Vander Stappen
,
L.
Hotoiu
,
L.
Yin
,
D.
Dolney
,
S.
Avery
,
F.
O'Grady
et al, “
Prompt gamma imaging for in vivo range verification of pencil beam scanning proton therapy
,”
Int. J. Radiat. Oncol., Biol., Phys.
99
,
210
218
(
2017
).
24.
A.
Koide
,
J.
Kataoka
,
T.
Masuda
,
S.
Mochizuki
,
T.
Taya
,
K.
Sueoka
,
L.
Tagawa
,
K.
Fujieda
,
T.
Maruhashi
,
T.
Kurihara
, and
T.
Inaniwa
, “
Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera
,”
Sci. Rep.
8
,
8116
(
2018
).
25.
S.
Mochizuki
,
J.
Kataoka
,
A.
Koide
,
K.
Fujieda
,
T.
Maruhashi
,
T.
Kurihara
,
K.
Sueoka
,
L.
Tagawa
,
M.
Yoneyama
, and
T.
Inaniwa
, “
High-precision compton imaging of 4.4 MeV prompt gamma-ray toward an on-line monitor for proton therapy
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
936
,
43
45
(
2019
).
26.
J. C.
Polf
,
C. A.
Barajas
,
S. W.
Peterson
,
D. S.
Mackin
,
S.
Beddar
,
L.
Ren
, and
M. K.
Gobbert
, “
Applications of machine learning to improve the clinical viability of Compton camera based in vivo range verification in proton radiotherapy
,”
Front. Phys.
10
,
838273
(
2022
).
27.
T.
Masuda
,
J.
Kataoka
,
M.
Arimoto
,
M.
Takabe
,
T.
Nishio
,
K.
Matsushita
,
T.
Miyake
,
S.
Yamamoto
,
T.
Inaniwa
, and
T.
Toshito
, “
Measurement of nuclear reaction cross sections by using Cherenkov radiation toward high-precision proton therapy
,”
Sci. Rep.
8
,
2570
(
2018
).
28.
A. K.
Glaser
,
R.
Zhang
,
D. J.
Gladstone
, and
B. W.
Pogue
, “
Optical dosimetry of radiotherapy beams using Cherenkov radiation: The relationship between light emission and dose
,”
Phys. Med. Biol.
59
,
3789
(
2014
).
29.
Y.
Helo
,
A.
Kacperek
,
I.
Rosenberg
,
G.
Royle
, and
A.
Gibson
, “
The physics of Cerenkov light production during proton therapy
,”
Phys. Med. Biol.
59
,
7107
(
2014
).
30.
S.
Yamamoto
,
T.
Toshito
,
S.
Okumura
, and
M.
Komori
, “
Luminescence imaging of water during proton-beam irradiation for range estimation
,”
Med. Phys.
42
,
6498
6506
(
2015
).
31.
T.
Yabe
,
S.
Yamamoto
,
M.
Oda
,
K.
Mori
,
T.
Toshito
, and
T.
Akagi
, “
Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy
,”
Med. Phys.
47
,
3882
3891
(
2020
).
32.
M. F.
Gensheimer
,
T. I.
Yock
,
N. J.
Liebsch
,
G. C.
Sharp
,
H.
Paganetti
,
N.
Madan
,
P. E.
Grant
, and
T.
Bortfeld
, “
In vivo proton beam range verification using spine MRI changes
,”
Int. J. Radiat. Oncol., Biol., Phys.
78
,
268
275
(
2010
).
33.
Y.
Hayakawa
,
J.
Tada
,
N.
Arai
,
K.
Hosono
,
M.
Sato
,
T.
Wagai
,
H.
Tsuji
, and
H.
Tsujii
, “
Acoustic pulse generated in a patient during treatment by pulsed proton radiation beam
,”
Radation. Oncol. Invest.
3
,
42
45
(
1995
).
34.
S.
Patch
,
M. K.
Covo
,
A.
Jackson
,
Y.
Qadadha
,
K.
Campbell
,
R.
Albright
,
P.
Bloemhard
,
A.
Donoghue
,
C.
Siero
,
T.
Gimpel
et al, “
Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image
,”
Phys. Med. Biol.
61
,
5621
(
2016
).
35.
S.
Kellnberger
,
W.
Assmann
,
S.
Lehrack
,
S.
Reinhardt
,
P.
Thirolf
,
D.
Queirós
,
G.
Sergiadis
,
G.
Dollinger
,
K.
Parodi
, and
V.
Ntziachristos
, “
Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging
,”
Sci. Rep.
6
,
29305
(
2016
).
36.
S.
Lehrack
,
W.
Assmann
,
D.
Bertrand
,
S.
Henrotin
,
J.
Herault
,
V.
Heymans
,
F.
Vander Stappen
,
P. G.
Thirolf
,
M.
Vidal
,
J.
Van de Walle
et al, “
Submillimeter ionoacoustic range determination for protons in water at a clinical synchrocyclotron
,”
Phys. Med. Biol.
62
,
L20
(
2017
).
37.
K. C.
Jones
,
W.
Nie
,
J. C.
Chu
,
J. V.
Turian
,
A.
Kassaee
,
C. M.
Sehgal
, and
S.
Avery
, “
Acoustic-based proton range verification in heterogeneous tissue: Simulation studies
,”
Phys. Med. Biol.
63
,
025018
(
2018
).
38.
M.
Garbacz
,
R.
Schulte
,
V.
Bashkirov
,
M.
Gao
,
M.
Pankuch
,
C.
Sarosiek
,
R. P.
Johnson
,
J. R.
Mendez
,
A.
Rucinski
, and
P.
Olko
,
Detection and Analysis of Scattered Protons for Verification of FLASH Lung Tumor Proton Therapy
(
University of California
,
2020
).
39.
K.
Gunzert Marx
,
H.
Iwase
,
D.
Schardt
, and
R.
Simon
, “
Secondary beam fragments produced by 200 MeV u−1 12C ions in water and their dose contributions in carbon ion radiotherapy
,”
New J. Phys.
10
,
075003
(
2008
).
40.
E.
Haettner
,
H.
Iwase
,
M.
Krämer
,
G.
Kraft
, and
D.
Schardt
, “
Experimental study of nuclear fragmentation of 200 and 400 MeV/u 12C ions in water for applications in particle therapy
,”
Phys. Med Biol.
58
,
8265
(
2013
).
41.
L.
Piersanti
,
F.
Bellini
,
F.
Bini
,
F.
Collamati
,
E.
De Lucia
,
M.
Durante
,
R.
Faccini
,
F.
Ferroni
,
S.
Fiore
,
E.
Iarocci
et al, “
Measurement of charged particle yields from PMMA irradiated by a 220 MeV/u 12C beam
,”
Phys. Med. Biol.
59
,
1857
(
2014
).
42.
A.
Rucinski
,
G.
Battistoni
,
F.
Collamati
,
E.
De Lucia
,
R.
Faccini
,
P.
Frallicciardi
,
C.
Mancini Terracciano
,
M.
Marafini
,
I.
Mattei
,
S.
Muraro
et al, “
Secondary radiation measurements for particle therapy applications: Charged particles produced by 4He and 12C ion beams in a PMMA target at large angle
,”
Phys. Med. Biol.
63
,
055018
(
2018
).
43.
M.
Fischetti
,
G.
Baroni
,
G.
Battistoni
,
G.
Bisogni
,
P.
Cerello
,
M.
Ciocca
,
P.
De Maria
,
M.
De Simoni
,
B. D.
Lullo
,
M.
Donetti
et al, “
Inter-fractional monitoring of 12C ions treatments: Results from a clinical trial at the CNAO facility
,”
Sci. Rep.
10
,
20735
(
2020
).
44.
S.
Sato
,
H.
Yokokawa
,
M.
Hosobuchi
, and
J.
Kataoka
, “
A simulation study of in-beam visualization system for proton therapy by monitoring scattered protons
,”
Front. Med.
10
,
1038348
(
2023
).
45.
B.
Mildenhall
,
P. P.
Srinivasan
,
M.
Tancik
,
J. T.
Barron
,
R.
Ramamoorthi
, and
R.
Ng
, “
NeRF: Representing scenes as neural radiance fields for view synthesis
,”
Commun. ACM
65
,
99
106
(
2021
).
46.
S.
Jan
,
G.
Santin
,
D.
Strul
,
S.
Staelens
,
K.
Assié
,
D.
Autret
,
S.
Avner
,
R.
Barbier
,
M.
Bardies
,
P.
Bloomfield
et al, “
GATE: A simulation toolkit for PET and SPECT
,”
Phys. Med. Biol.
49
,
4543
(
2004
).
47.
S.
Jan
,
D.
Benoit
,
E.
Becheva
,
T.
Carlier
,
F.
Cassol
,
P.
Descourt
,
T.
Frisson
,
L.
Grevillot
,
L.
Guigues
,
L.
Maigne
et al, “
GATE V6: A major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy
,”
Phys. Med. Biol.
56
,
881
(
2011
).
48.
D.
Sarrut
,
M.
Bardiès
,
N.
Boussion
,
N.
Freud
,
S.
Jan
,
J. M.
Létang
,
G.
Loudos
,
L.
Maigne
,
S.
Marcatili
,
T.
Mauxion
et al, “
A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications
,”
Med. Phys.
41
,
064301
(
2014
).
49.
D.
Sarrut
,
M.
Bała
,
M.
Bardiès
,
J.
Bert
,
M.
Chauvin
,
K.
Chatzipapas
,
M.
Dupont
,
A.
Etxebeste
,
L. M.
Fanchon
,
S.
Jan
et al, “
Advanced Monte Carlo simulations of emission tomography imaging systems with GATE
,”
Phys. Med. Biol.
66
,
10TR03
(
2021
).
50.
D.
Sarrut
,
T.
Baudier
,
D.
Borys
,
A.
Etxebeste
,
H.
Fuchs
,
J.
Gajewski
,
L.
Grevillot
,
S.
Jan
,
G. C.
Kagadis
,
H. G.
Kang
et al, “
The OpenGATE ecosystem for Monte Carlo simulation in medical physics
,”
Phys. Med. Biol.
67
,
184001
(
2022
).
51.
S.
Agostinelli
,
J.
Allison
,
K. A.
Amako
,
J.
Apostolakis
,
H.
Araujo
,
P.
Arce
,
M.
Asai
,
D.
Axen
,
S.
Banerjee
,
G.
Barrand
et al, “
GEANT4—A simulation toolkit
,”
Nucl. Instrum. Methods Res., Sect. A
506
,
250
303
(
2003
).
52.
J.
Allison
,
K.
Amako
,
J.
Apostolakis
,
H.
Araujo
,
P. A.
Dubois
,
M.
Asai
,
G.
Barrand
,
R.
Capra
,
S.
Chauvie
,
R.
Chytracek
et al, “
Geant4 developments and applications
,”
IEEE Trans. Nucl. Sci.
53
,
270
278
(
2006
).
53.
C. Z.
Jarlskog
and
H.
Paganetti
, “
Physics settings for using the Geant4 toolkit in proton therapy
,”
IEEE Trans. Nucl. Sci.
55
,
1018
1025
(
2008
).
54.
T.
Matsumura
,
T.
Matsubara
,
T.
Hiraiwa
,
K.
Horie
,
M.
Kuze
,
K.
Miyabayashi
,
A.
Okamura
,
T.
Sawada
,
S.
Shimizu
,
T.
Shinkawa
et al, “
Effects of radiation damage caused by proton irradiation on multi-pixel photon counters (MPPCs)
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
603
,
301
308
(
2009
).
55.
S.
Bergenius
,
S.
Carius
,
P.
Carlson
,
J.
Grove
,
G.
Johansson
,
W.
Klamra
,
L.
Nilsson
, and
M.
Pearce
, “
Radiation hardness tests of CsI (Tl) crystals for the GLAST electromagnetic calorimeter
,” in
Proceedings of the 28th International Cosmic Ray Conference
. July 31-August 7, 2003.
Tsukuba, Japan
, edited by
T.
Kajita
,
Y.
Asaoka
,
A.
Kawachi
,
Y.
Matsubara
, and
M.
Sasaki
S.
Bergenius
,
S.
Carius
,
P.
Carlson
,
J.
Grove
,
G.
Johansson
,
W.
Klamra
,
L.
Nilsson
, and
M.
Pearce
, [
International Union of Pure and Applied Physics (IUPAP)
,
2003
], p.
2787
.
56.
K.
Frey
,
D.
Unholtz
,
J.
Bauer
,
J.
Debus
,
C.
Min
,
T.
Bortfeld
,
H.
Paganetti
, and
K.
Parodi
, “
Automation and uncertainty analysis of a method for in-vivo range verification in particle therapy
,”
Phys. Med. Biol.
59
,
5903
(
2014
).
57.
S. P.
Nischwitz
,
J.
Bauer
,
T.
Welzel
,
H.
Rief
,
O.
Jäkel
,
T.
Haberer
,
K.
Frey
,
J.
Debus
,
K.
Parodi
,
S. E.
Combs
et al, “
Clinical implementation and range evaluation of in vivo PET dosimetry for particle irradiation in patients with primary glioma
,”
Radiother. Oncol.
115
,
179
185
(
2015
).
58.
E.
Draeger
,
D.
Mackin
,
S.
Peterson
,
H.
Chen
,
S.
Avery
,
S.
Beddar
, and
J.
Polf
, “
3D prompt gamma imaging for proton beam range verification
,”
Phys. Med. Biol.
63
,
035019
(
2018
).
59.
C.
Freijo
,
J. L.
Herraiz
,
D.
Sanchez Parcerisa
, and
J. M.
Udias
, “
Dictionary-based protoacoustic dose map imaging for proton range verification
,”
Photoacoustics
21
,
100240
(
2021
).
60.
A.
Paumier
,
M.
Ghalibafian
,
J.
Gilmore
,
A.
Beaudre
,
P.
Blanchard
,
M. E.
Nemr
,
F.
Azoury
,
H.
Al Hamokles
,
D.
Lefkopoulos
, and
T.
Girinsky
, “
Dosimetric benefits of intensity-modulated radiotherapy combined with the deep-inspiration breath-hold technique in patients with mediastinal Hodgkin's lymphoma
,”
Int. J. Radiat. Oncol., Biol., Phys.
82
,
1522
1527
(
2012
).
61.
A. M.
Charpentier
,
T.
Conrad
,
J.
Sykes
,
A.
Ng
,
R.
Zhou
,
A.
Parent
,
C.
Coolens
,
R. W.
Tsang
,
M. K.
Gospodarowicz
,
A.
Sun
et al, “
Active breathing control for patients receiving mediastinal radiation therapy for lymphoma: Impact on normal tissue dose
,”
Pract. Radiat. Oncol.
4
,
174
180
(
2014
).
You do not currently have access to this content.