Precipitates have recently been found to significantly enhance the mechanical quality factor in piezoelectric ceramics. Such a piezoelectric hardening effect was attributed to strong interactions between ferroelectric domains and precipitates. In the present work, the response of domains to applied electric fields is observed in situ via transmission electron microscopy in aged (Ba, Ca)TiO3 ceramics with precipitates to reveal the underlying mechanism of this phenomenon. Ferroelectric domains in the Ba-rich matrix grain are observed to be more concentrated near non-polar Ca-rich precipitates. With increasing applied voltage, domains separate from precipitates merge together first, while those near precipitates persist to higher voltages. During ramping down, domains nucleate from precipitates. These direct observations confirm the strong interactions between ferroelectric domains and precipitates in piezoelectric ceramics.

1.
B.
Jaffe
,
W. R.
Cook
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic Press
,
London
,
1971
).
2.
G. H.
Haertling
,
J. Am. Ceram. Soc.
82
,
797
818
(
1999
).
3.
A. J.
Bell
and
O.
Deubzer
,
MRS. Bull.
43
,
581
587
(
2018
).
4.
Y.
Saito
,
H.
Takao
,
T.
Tani
,
T.
Nonoyama
,
K.
Takatori
,
T.
Homma
,
T.
Nagaya
, and
M.
Nakamura
,
Nature
432
,
84
87
(
2004
).
5.
W.
Liu
and
X.
Ren
,
Phys. Rev. Lett.
103
,
257602
(
2009
).
6.
T.
Takenaka
,
K.
Maruyama
, and
K.
Sakata
,
Jpn. J. Appl. Phys., Part 1
30
,
2236
(
1991
).
7.
C.
Zhao
,
S.
Gao
,
T.
Yang
,
M.
Scherer
,
J.
Schultheiß
,
D.
Meier
,
X.
Tan
,
H.
Kleebe
,
L.
Chen
,
J.
Koruza
, and
J.
Rödel
,
Adv. Mater.
33
,
2102421
(
2021
).
8.
M.
Li
,
M. J.
Pietrowski
,
R. A.
De Souza
,
H.
Zhang
,
I. M.
Reaney
,
S. N.
Cook
,
J. A.
Kilner
, and
D. C.
Sinclair
,
Nat. Mater.
13
,
31
35
(
2014
).
9.
K.
Uchino
,
J. H.
Zheng
,
Y. H.
Chen
,
X. H.
Du
,
J.
Ryu
,
Y.
Gao
,
S.
Ural
,
S.
Priya
, and
S.
Hirose
,
J. Mater. Sci.
41
,
217
228
(
2006
).
10.
M.
Höfling
,
X.
Zhou
,
L. M.
Riemer
,
E.
Bruder
,
B.
Liu
,
L.
Zhou
,
P. B.
Groszewicz
,
F.
Zhou
,
B.
Xu
,
K.
Durst
,
X.
Tan
,
D.
Damjanovic
,
J.
Koruza
, and
J.
Rödel
,
Science
372
(
6545
),
961
964
(
2021
).
11.
F. W.
Cooke
,
R. C.
Bradt
,
R. C.
DeVries
, and
G. S.
Ansell
,
J. Am. Ceram. Soc.
49
,
648
651
(
1966
).
12.
M. P.
Zheng
,
C.
Zhao
, and
J.
Rödel
,
Appl. Phys. Lett.
122
,
132904
(
2023
).
13.
C.
Zhao
,
S.
Gao
,
H.
Kleebe
,
X.
Tan
,
J.
Koruza
, and
J.
Rödel
,
Adv. Mater.
34
,
2202379
(
2022
).
14.
S.
Gao
,
C.
Zhao
,
M.
Bohnen
,
R.
Müller
,
J.
Rödel
, and
H.
Kleebe
,
Acta Mater.
254
,
118998
(
2023
).
15.
K. V.
Lalitha
,
L. M.
Riemer
,
J.
Koruza
, and
J.
Rödel
,
Appl. Phys. Lett.
111
,
022905
(
2017
).
16.
H.
Li
,
H.
Chen
,
X.
Li
,
J.
Xing
,
W.
Liu
,
Z.
Tan
,
M.
Mo
,
N.
Chen
,
M.
Tang
, and
J. G.
Zhu
,
ACS Appl. Mater. Interfaces
15
,
36576
(
2023
).
17.
M.
Zheng
,
C.
Zhao
,
X.
Yan
,
R.
Khachaturyan
,
F.
Zhuo
,
Y.
Hou
, and
J.
Koruza
,
Adv. Funct. Mater.
33
,
2301356
(
2023
).
18.
F.
Guo
,
S.
Dong
,
K.
Li
,
J.
Wang
,
W.
Long
,
P.
Fang
,
X.
Li
,
B.
Yang
, and
Z.
Xi
,
J. Eur. Ceram. Soc.
42
,
4881
4887
(
2022
).
19.
F.
Guo
,
Q.
Zhou
,
Y.
Chen
,
C.
Yang
,
W.
Bai
,
H.
Zhou
,
R.
Qui
,
W.
Long
,
P.
Fang
, and
Z.
Xi
,
J. Am. Ceram. Soc.
106
,
5258
5268
(
2023
).
20.
X.
Tan
,
H.
He
, and
J. K.
Shang
,
J. Mater. Res.
20
,
1641
(
2005
).
21.
Y. H.
Hu
,
H. M.
Chan
,
Z.
Wen
, and
M. P.
Harmer
,
J. Am. Ceram. Soc.
69
,
594
602
(
1986
).
22.
R.
Ali
and
M.
Yashima
,
J. Solid State Chem.
178
,
2867
2872
(
2005
).
23.
M.
Yashima
and
R.
Ali
,
Solid State Ionics
180
,
120
126
(
2009
).
24.
D. I.
Woodward
and
I. M.
Reaney
,
Acta Crystallogr., Sect. B
61
,
387
399
(
2005
).
25.
Z. M.
Fan
,
L.
Zhou
,
T. H.
Kim
,
J.
Zhang
,
S. T.
Zhang
, and
X.
Tan
,
Phys. Rev. Mater.
3
,
024402
(
2019
).
26.
V. Y.
Shur
,
J. Mater. Sci.
41
,
199
210
(
2006
).
You do not currently have access to this content.