We experimentally demonstrate a simple design for a spin-wave frequency demultiplexer based on submicrometer-width yttrium iron garnet waveguides intersecting at an angle of 30°. We show that, depending on the frequency, spin waves excited in the input arm of the device are predominantly directed to one of the two output arms. This spin-wave routing is characterized by a large extinction ratio of about 10. The frequency response of the demultiplexer can be efficiently controlled by changing the static magnetic field and the geometry of the device. Due to the small intersection angle and symmetry of the device, its operation does not require conversion between different types of spin-wave modes. This results in a high efficiency of the device and allows its facile integration into magnonic networks for complex signal processing and computing with spin waves.

1.
A.
Khitun
,
M.
Bao
, and
K. L.
Wang
, “
Magnonic logic circuits
,”
J. Phys. D
43
,
264005
(
2010
).
2.
S.
Dutta
,
S.-C.
Chang
,
N.
Kani
,
D. E.
Nikonov
,
S.
Manipatruni
,
I. A.
Young
, and
A.
Naeemi
, “
Non-volatile clocked spin wave interconnect for beyond-CMOS nanomagnet pipelines
,”
Sci. Rep.
5
,
9861
(
2015
).
3.
A.
Mahmoud
,
F.
Ciubotaru
,
F.
Vanderveken
,
A. V.
Chumak
,
S.
Hamdioui
,
C.
Adelmann
, and
S.
Cotofana
, “
Introduction to spin wave computing
,”
J. Appl. Phys.
128
,
161101
(
2020
).
4.
A.
Papp
,
W.
Porod
, and
G.
Csaba
, “
Nanoscale neural network using non-linear spin-wave interference
,”
Nat. Commun.
12
,
6422
(
2021
).
5.
T.
Schneider
,
A. A.
Serga
,
B.
Leven
,
B.
Hillebrands
,
R. L.
Stamps
, and
M. P.
Kostylev
, “
Realization of spin-wave logic gates
,”
Appl. Phys. Lett.
92
,
022505
(
2008
).
6.
K.-S.
Lee
and
S.-K.
Kim
, “
Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions
,”
J. Appl. Phys.
104
,
053909
(
2008
).
7.
U.-H.
Hansen
,
V. E.
Demidov
, and
S. O.
Demokritov
, “
Dual-function phase shifter for spin-wave logic applications
,”
Appl. Phys. Lett.
94
,
252502
(
2009
).
8.
K.
Nanayakkara
,
A.
Anferov
,
A. P.
Jacob
,
S. J.
Allen
, and
A.
Kozhanov
, “
Cross junction spin wave logic architecture
,”
IEEE Trans. Magn.
50
,
3402204
(
2014
).
9.
K.
Vogt
,
F. Y.
Fradin
,
J. E.
Pearson
,
T.
Sebastian
,
S. D.
Bader
,
B.
Hillebrands
,
A. P.
Hoffmann
, and
H.
Schultheiss
, “
Realization of a spin-wave multiplexer
,”
Nat. Commun.
5
,
3727
(
2014
).
10.
Á.
Papp
,
W.
Porod
,
Á. I.
Csurgay
et al, “
Nanoscale spectrum analyzer based on spin-wave interference
,”
Sci. Rep.
7
,
9245
(
2017
).
11.
T.
Goto
,
T.
Yoshimoto
,
B.
Iwamoto
et al, “
Three port logic gate using forward volume spin wave interference in a thin yttrium iron garnet film
,”
Sci. Rep.
9
,
16472
(
2019
).
12.
K. O.
Nikolaev
,
D.
Raskhodchikov
,
J.
Bensmann
,
E.
Lomonte
,
L.
Jin
,
R.
Schmidt
,
J.
Kern
,
S.
Michaelis de Vasconcellos
,
R.
Bratschitsch
,
S. O.
Demokritov
,
W. H. P.
Pernice
, and
V. E.
Demidov
,
Appl. Phys. Lett.
123
,
142402
(
2023
).
13.
A. V.
Sadovnikov
,
C. S.
Davies
,
S. V.
Grishin
,
V. V.
Kruglyak
,
D. V.
Romanenko
,
Y. P.
Sharaevskii
, and
S. A.
Nikitov
, “
Magnonic beam splitter: The building block of parallel magnonic circuitry
,”
Appl. Phys. Lett.
106
,
192406
(
2015
).
14.
H.
Qin
,
R. B.
Holländer
,
L.
Flajšman
,
F.
Hermann
,
R.
Dreyer
,
G.
Woltersdorf
, and
S.
van Dijken
, “
Nanoscale magnonic Fabry-Perot resonator for low-loss spin-wave manipulation
,”
Nat. Commun.
12
,
2293
(
2021
).
15.
J.
Chen
,
H.
Wang
,
T.
Hula
et al, “
Reconfigurable spin-wave interferometer at the nanoscale
,”
Nano Lett.
21
,
6237
(
2021
).
16.
Y.
Khivintsev
,
M.
Ranjbar
,
D.
Gutierrez
,
H.
Chiang
,
A.
Kozhevnikov
,
Y.
Filimonov
, and
A.
Khitun
, “
Prime factorization using magnonic holographic devices
,”
J. Appl. Phys.
120
,
123901
(
2016
).
17.
Y. V.
Khivintsev
,
V. K.
Sakharov
,
A. V.
Kozhevnikov
,
G. M.
Dudko
,
Y. A.
Filimonov
, and
A.
Khitun
, “
Spin waves in YIG based magnonic networks: Design and technological aspects
,”
J. Magn. Magn. Mater.
545
,
168754
(
2022
).
18.
F.
Heussner
,
G.
Talmelli
,
M.
Geilen
et al, “
Experimental realization of a passive gigahertz frequency-division demultiplexer for magnonic logic networks
,”
Phys. Status Solidi RRL
14
,
1900695
(
2020
).
19.
Q.
Wang
,
A. V.
Chumak
, and
P.
Pirro
, “
Inverse-design magnonic devices
,”
Nat. Commun.
12
,
2636
(
2021
).
20.
J.
Zhao
,
L.
Feng
,
M.
Ma
, and
F.
Ma
, “
Three-terminal magnonic demultiplexer, power divider, and circulator
,”
J. Magn. Magn. Mater.
586
,
171161
(
2023
).
21.
Q.
Wang
,
M.
Kewenig
,
M.
Schneider
,
R.
Verba
,
F.
Kohl
,
B.
Heinz
,
M.
Geilen
,
M.
Mohseni
,
B.
Lägel
,
F.
Ciubotaru
,
C.
Adelmann
,
C.
Dubs
,
S. D.
Cotofana
,
O. V.
Dobrovolskiy
,
T.
Brächer
,
P.
Pirro
, and
A. V.
Chumak
, “
A magnonic directional coupler for integrated magnonic half-adders
,”
Nat. Electron.
3
,
765
774
(
2020
).
22.
A. A.
Martyshkin
and
A. V.
Sadovnikov
,
J. Magn. Magn. Mater.
595
,
171644
(
2024
).
23.
Q.
Wang
,
P.
Pirro
,
R.
Verba
,
A.
Slavin
,
B.
Hillebrands
, and
A. V.
Chumak
, “
Reconfigurable nanoscale spin-wave directional coupler
,”
Sci. Adv.
4
,
e1701517
(
2018
).
24.
B. A.
Kalinikos
and
A. N.
Slavin
, “
Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions
,”
J. Phys. C
19
,
7013
(
1986
).
25.
V. E.
Demidov
and
S. O.
Demokritov
, “
Magnonic waveguides studied by microfocus Brillouin light scattering
,”
IEEE Trans. Magn.
51
,
0800215
(
2015
).
26.
O.
Büttner
,
M.
Bauer
,
C.
Mathieu
,
S. O.
Demokritov
,
B.
Hillebrands
,
P. A.
Kolodin
,
M. P.
Kostylev
,
S.
Sure
,
H.
Dötsch
,
V.
Grimalsky
,
Y.
Rapoport
, and
A. N.
Slavin
, “
Mode beating of spin wave beams in ferrimagnetic Lu2.04Bi0.96Fe5O12 films
,”
IEEE Trans. Magn.
34
,
1381
(
1998
).
27.
V. E.
Demidov
,
S. O.
Demokritov
,
K.
Rott
,
P.
Krzysteczko
, and
G.
Reiss
, “
Mode interference and periodic self-focusing of spin waves in permalloy microstripes
,”
Phys. Rev. B
77
,
064406
(
2008
).
28.
K. O.
Nikolaev
,
S. R.
Lake
,
G.
Schmidt
,
S. O.
Demokritov
, and
V. E.
Demidov
, “
Zero-field spin waves in YIG nanowaveguides
,”
Nano Lett.
23
,
8719
8724
(
2023
).

Supplementary Material

You do not currently have access to this content.