Phononic crystals are renowned for their distinctive wave propagation characteristics, notably bandgaps that offer precise control over vibration phenomena, positioning them as a critical material in advanced vibro-elastic engineering and design. We investigate how pore shapes influence the bandgap in continuum two-dimensional phononic crystals made from a single material. Using the square lattice and unit cells with fourfold symmetry, our numerical analyses reveal that the normalized gap size is highly dependent on the minimum ligament width in the structure. Additionally, we find that fine geometric features represented by higher-order Fourier coefficients decrease the gap size. This study offers insight into the design of phononic crystals and vibro-elastic metamaterials for precise wave control through void patterning.

1.
M.
Sigalas
and
E. N.
Economou
, “
Band structure of elastic waves in two dimensional systems
,”
Solid State Commun.
86
,
141
143
(
1993
).
2.
M. S.
Kushwaha
,
P.
Halevi
,
L.
Dobrzynski
, and
B.
Djafari-Rouhani
, “
Acoustic band structure of periodic elastic composites
,”
Phys. Rev. Lett.
71
,
2022
2025
(
1993
).
3.
M. S.
Kushwaha
,
P.
Halevi
,
G.
Martínez
,
L.
Dobrzynski
, and
B.
Djafari-Rouhani
, “
Theory of acoustic band structure of periodic elastic composites
,”
Phys. Rev. B
49
,
2313
2322
(
1994
).
4.
O. R.
Bilal
and
M. I.
Hussein
, “
Ultrawide phononic band gap for combined in-plane and out-of-plane waves
,”
Phys. Rev. E
84
,
065701
(
2011
).
5.
T.
Liu
,
F.
Chen
,
S.
Liang
,
H.
Gao
, and
J.
Zhu
, “
Subwavelength sound focusing and imaging via gradient metasurface-enabled spoof surface acoustic wave modulation
,”
Phys. Rev. Appl.
11
,
034061
(
2019
).
6.
M. I.
Rosa
,
R. K.
Pal
,
J. R.
Arruda
, and
M.
Ruzzene
, “
Edge states and topological pumping in spatially modulated elastic lattices
,”
Phys. Rev. Lett.
123
,
034301
(
2019
).
7.
J.
Chen
,
Y.
Zhang
,
Y.
Yu
,
Y.
Zhai
,
H.
Nguyen
,
S.
Tracy
,
X.
Zhou
, and
G.
Huang
, “
Broadband acoustic attenuation in microperforated meta-shells with ventilation
,”
Appl. Phys. Lett.
122
,
231701
(
2023
).
8.
C.
Lagarrigue
,
J.-P.
Groby
,
O.
Dazel
, and
V.
Tournat
, “
Design of metaporous supercells by genetic algorithm for absorption optimization on a wide frequency band
,”
Appl. Acoust.
102
,
49
54
(
2016
).
9.
V.
Romero-García
,
G.
Theocharis
,
O.
Richoux
,
A.
Merkel
,
V.
Tournat
, and
V.
Pagneux
, “
Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators
,”
Sci. Rep.
6
,
19519
(
2016
).
10.
M. D.
Guild
,
A. J.
Hicks
,
M. R.
Haberman
,
A.
Alù
, and
P. S.
Wilson
, “
Acoustic scattering cancellation of irregular objects surrounded by spherical layers in the resonant regime
,”
J. Appl. Phys.
118
,
164903
(
2015
).
11.
C.
Chen
,
Z.
Du
,
G.
Hu
, and
J.
Yang
, “
A low-frequency sound absorbing material with subwavelength thickness
,”
Appl. Phys. Lett.
110
,
221903
(
2017
).
12.
S.
Sergeev
,
R.
Fleury
, and
H.
Lissek
, “
Ultrabroadband sound control with deep-subwavelength plasmacoustic metalayers
,”
Nat. Commun.
14
,
2874
(
2023
).
13.
Y.
Chen
,
B.
Zhao
,
X.
Liu
, and
G.
Hu
, “
Highly anisotropic hexagonal lattice material for low frequency water sound insulation
,”
Extreme Mech. Lett.
40
,
100916
(
2020
).
14.
M.
Kafesaki
,
M. M.
Sigalas
, and
N.
García
, “
Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials
,”
Phys. Rev. Lett.
85
,
4044
4047
(
2000
).
15.
E.
Muzar
and
J. A.
Stotz
, “
Defect-free phononic crystal waveguides on GaAs
,”
Crystals
13
,
1540
(
2023
).
16.
A. A.
Oliner
, “
Waveguides for acoustic surface waves: A review
,”
Proc. IEEE
64
(5),
615
627
(
1976
).
17.
M.
Roshdy
,
T.
Chen
,
S.
Nakhmanson
, and
O. R.
Bilal
, “
Tunable ferroelectric auxetic metamaterials for guiding elastic waves in three-dimensions
,”
Extreme Mech. Lett.
59
,
101966
(
2023
).
18.
M.
Sigalas
, “
Defect states of acoustic waves in a two-dimensional lattice of solid cylinders
,”
J. Appl. Phys.
84
,
3026
3030
(
1998
).
19.
G.
Ma
,
M.
Yang
,
Z.
Yang
, and
P.
Sheng
, “
Low-frequency narrow-band acoustic filter with large orifice
,”
Appl. Phys. Lett.
103
,
011903
(
2013
).
20.
N.
Boechler
,
C.
Daraio
,
R. K.
Narisetti
,
M.
Ruzzene
, and
M.
Leamy
,
Analytical and Experimental Analysis of Bandgaps in Nonlinear One Dimensional Periodic Structures
(
Springer
,
2010
), pp.
209
219
.
21.
M. I.
Hussein
and
M. J.
Frazier
, “
Band structure of phononic crystals with general damping
,”
J. Appl. Phys.
108
,
093506
(
2010
).
22.
S. A.
Cummer
,
B.-I.
Popa
,
D.
Schurig
,
D. R.
Smith
,
J.
Pendry
,
M.
Rahm
, and
A.
Starr
, “
Scattering theory derivation of a 3D acoustic cloaking shell
,”
Phys. Rev. Lett.
100
,
024301
(
2008
).
23.
X.
Zhu
,
B.
Liang
,
W.
Kan
,
X.
Zou
, and
J.
Cheng
, “
Acoustic cloaking by a superlens with single-negative materials
,”
Phys. Rev. Lett.
106
,
014301
(
2011
).
24.
X.
Xu
,
C.
Wang
,
W.
Shou
,
Z.
Du
,
Y.
Chen
,
B.
Li
,
W.
Matusik
,
N.
Hussein
, and
G.
Huang
, “
Physical realization of elastic cloaking with a polar material
,”
Phys. Rev. Lett.
124
,
114301
(
2020
).
25.
Y.
Li
,
E.
Baker
,
T.
Reissman
,
C.
Sun
, and
W. K.
Liu
, “
Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting
,”
Appl. Phys. Lett.
111
,
251903
(
2017
).
26.
G.
Lee
,
D.
Lee
,
J.
Park
,
Y.
Jang
,
M.
Kim
, and
J.
Rho
, “
Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals
,”
Commun. Phys.
5
,
94
(
2022
).
27.
A.
Ikei
,
J.
Wissman
,
K.
Sampath
,
G.
Yesner
, and
S. N.
Qadri
, “
Tunable in situ 3D-printed PVDF-TrFE piezoelectric arrays
,”
Sensors
21
,
5032
(
2021
).
28.
Z.
Lin
,
H.
Al Ba'ba'a
, and
S.
Tol
, “
Piezoelectric metastructures for simultaneous broadband energy harvesting and vibration suppression of traveling waves
,”
Smart Mater. Struct.
30
,
075037
(
2021
).
29.
M. N.
Hasan
,
T. E.
Greenwood
,
R. G.
Parker
,
Y. L.
Kong
, and
P.
Wang
, “
Fractal patterns in the parameter space of a bistable duffing oscillator
,”
Phys. Rev. E
108
,
L022201
(
2023
).
30.
B.
Peng
,
H.
Xu
,
F.
Song
,
P.
Wen
,
Y.
Tian
, and
Y.
Zheng
, “
Additive manufacturing of porous magnesium alloys for biodegradable orthopedic implants: Process, design, and modification
,”
J. Mater. Sci. Technol.
182
,
79
(
2024
).
31.
P.
Jiang
,
X.-P.
Wang
,
T.-N.
Chen
, and
J.
Zhu
, “
Band gap and defect state engineering in a multi-stub phononic crystal plate
,”
J. Appl. Phys.
117
,
154301
(
2015
).
32.
S. G.
Konarski
and
C. J.
Naify
, “
Elastic bandgap widening and switching via spatially varying materials and buckling instabilities
,”
JASA Express Lett.
1
,
015602
(
2021
).
33.
Y.
Li
,
Y.
Luo
, and
X.
Zhang
, “
Topological design of phononic crystals for multiple wide band gaps
,”
J. Sound Vib.
529
,
116962
(
2022
).
34.
Y.
Lu
,
Y.
Yang
,
J. K.
Guest
, and
A.
Srivastava
, “
3-D phononic crystals with ultra-wide band gaps
,”
Sci. Rep.
7
,
43407
(
2017
).
35.
P.
Celli
,
B.
Yousefzadeh
,
C.
Daraio
, and
S.
Gonella
, “
Bandgap widening by disorder in rainbow metamaterials
,”
Appl. Phys. Lett.
114
,
091903
(
2019
).
36.
L.
Raghavan
and
A. S.
Phani
, “
Local resonance bandgaps in periodic media: Theory and experiment
,”
J. Acoust. Soc. Am.
134
,
1950
1959
(
2013
).
37.
K. H.
Matlack
,
A.
Bauhofer
,
S.
Krödel
,
A.
Palermo
, and
C.
Daraio
, “
Composite 3D-printed metastructures for low-frequency and broadband vibration absorption
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
8386
8390
(
2016
).
38.
A.
Bossart
and
R.
Fleury
, “
Extreme spatial dispersion in nonlocally resonant elastic metamaterials
,”
Phys. Rev. Lett.
130
,
207201
(
2023
).
39.
A. A.
Bossart
, “
Nonlocally-resonant metamaterials
,” Doctoral thesis (
EPFL
,
2023
).
40.
D.
Torrent
,
Y.
Pennec
, and
B.
Djafari-Rouhani
, “
Resonant and nonlocal properties of phononic metasolids
,”
Phys. Rev. B
92
,
174110
(
2015
).
41.
X.
Zhou
,
Y.
Xu
,
Y.
Liu
,
L.
Lv
,
F.
Peng
, and
L.
Wang
, “
Extending and lowering band gaps by multilayered locally resonant phononic crystals
,”
Appl. Acoust.
133
,
97
106
(
2018
).
42.
P.
Wang
,
J.
Shim
, and
K.
Bertoldi
, “
Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals
,”
Phys. Rev. B
88
,
014304
(
2013
).
43.
Y.
Liu
,
J. Y.
Su
, and
L.
Gao
, “
The influence of the micro-topology on the phononic band gaps in 2D porous phononic crystals
,”
Phys. Lett. A
372
,
6784
6789
(
2008
).
44.
X.-X.
Su
,
Y.-F.
Wang
, and
Y.-S.
Wang
, “
Effects of Poisson's ratio on the band gaps and defect states in two-dimensional vacuum/solid porous phononic crystals
,”
Ultrasonics
52
,
255
265
(
2012
).
45.
K.
Wang
,
Y.
Liu
,
T.
Liang
, and
B.
Wang
, “
Band structures in fractal grading porous phononic crystals
,”
J. Phys. Chem. Solids
116
,
367
374
(
2018
).
46.
Y.
Liu
,
X.-Z.
Sun
, and
S.-T.
Chen
, “
Band gap structures in two-dimensional super porous phononic crystals
,”
Ultrasonics
53
,
518
524
(
2013
).
47.
S. C.
Paul
,
H.
Oh
,
J.
Hochhalter
, and
P.
Wang
, “
Effects of pore shape contour on band gaps of 2D periodic structures
,” in
Bulletin of the American Physical Society
(
2023
).
48.
F.
Javid
,
P.
Wang
,
A.
Shanian
, and
K.
Bertoldi
, “
Architected materials with ultra-low porosity for vibration control
,”
Adv. Mater.
28
,
5943
5948
(
2016
).
49.
Z.-G.
Chen
and
Y.
Wu
, “
Tunable topological phononic crystals
,”
Phys. Rev. Appl.
5
,
054021
(
2016
).
50.
M.
Lyu
,
G.
Xu
,
B.
Cheng
, and
Z.
Xia
, “
Parametric analysis: Compressibility of rubber on bandgap for phononic crystals
,”
Mod. Phys. Lett. B
38
,
2450168
(
2023
).
51.
J. T. B.
Overvelde
,
S.
Shan
, and
K.
Bertoldi
, “
Compaction through buckling in 2D periodic, soft and porous structures: Effect of pore shape
,”
Adv. Mater.
24
,
2337
2342
(
2012
).
52.
M.
Lyu
,
F.
Zhang
,
B.
Cheng
,
L.
Dai
, and
Z.
Xia
, “
Study on influence of parameters of buckling behavior in soft mechanical metamaterials
,”
Mod. Phys. Lett. B
38
,
2450118
(
2024
).
53.
K. A.
Khan
,
M. H.
Alshaer
, and
M. A.
Khan
, “
A novel twofold symmetry architected metamaterials with high compressibility and negative Poisson's ratio
,”
Adv. Eng. Mater.
23
,
2001041
(
2021
).
54.
M. S.
Elsayed
and
D.
Pasini
, “
Analysis of the elastostatic specific stiffness of 2D stretching-dominated lattice materials
,”
Mech. Mater.
42
,
709
725
(
2010
).
55.
Y.
Chen
,
T.
Li
,
F.
Scarpa
, and
L.
Wang
, “
Lattice metamaterials with mechanically tunable Poisson's ratio for vibration control
,”
Phys. Rev. Appl.
7
,
024012
(
2017
).
56.
K. K.
Dudek
,
J. A.
Iglesias Martínez
,
G.
Ulliac
,
L.
Hirsinger
,
L.
Wang
,
V.
Laude
, and
M.
Kadic
, “
Micro-scale mechanical metamaterial with a controllable transition in the Poisson's ratio and band gap formation
,”
Adv. Mater.
35
,
2210993
(
2023
).
57.
J. T.
Overvelde
and
K.
Bertoldi
, “
Relating pore shape to the non-linear response of periodic elastomeric structures
,”
J. Mech. Phys. Solids
64
,
351
366
(
2014
).
58.
J.
Shim
,
P.
Wang
, and
K.
Bertoldi
, “
Harnessing instability-induced pattern transformation to design tunable phononic crystals
,”
Int. J. Solids Struct.
58
,
52
61
(
2015
).
59.
M.
Maldovan
and
E. L.
Thomas
,
Periodic Materials and Interference Lithography: For Photonics, Phononics and Mechanics
(
John Wiley & Sons
,
2009
).
You do not currently have access to this content.