Parallel compressive super-resolution imaging has attracted increasing attention in recent years. However, the super-resolution quality depends on modulation masks and reconstruction algorithms. A deep-learning method provides an efficient solution, but in wide field-of-view (FOV) scenarios, the differences between optical transfer functions (OTFs) of each pixel increase the system complexity and limit its practical application. This study proposed a wide FOV parallel compressive super-resolution imaging approach based on a physics-enhanced network. First, the network and modulation masks of an arbitrary 128 × 128-pixel region were trained; then, the trained network was fine-tuned for the rest of the 128 × 128-pixel regions in the entire wide FOV, which effectively eliminated the OTF variability. Numerical simulations and practical experiments demonstrated that through the proposed approach, super-resolution images of 1020 × 1500 pixels can be reconstructed from 272 × 400-pixel low-resolution measurements using only three designed masks, with the resolution enhanced 3.75 × 3.75 times and the peak signal-to-noise ratio improved by 89.4% compared to the results of the previous compressed sensing algorithm. Besides, the training time was dramatically reduced by 95.5-fold compared with the traditional training strategy for each region alone. This approach decreases the imaging complexity of wide FOV and achieves the high-quality super-resolution reconstruction under few trained masks, thus we believe it can promote rapid imaging for super-resolution and a wide FOV ranging from infrared to terahertz.

1.
M. F.
Duarte
,
M. A.
Davenport
,
D.
Takhar
,
J. N.
Laska
,
T.
Sun
,
K. F.
Kelly
, and
R. G.
Baraniuk
, “
Single-pixel imaging via compressive sampling
,”
IEEE Signal Process. Mag.
25
(
2
),
83
91
(
2008
).
2.
M. P.
Edgar
,
G. M.
Gibson
, and
M. J.
Padgett
, “
Principles and prospects for single-pixel imaging
,”
Nat. Photonics
13
(
1
),
13
20
(
2019
).
3.
G. M.
Gibson
,
S. D.
Johnson
, and
M. J.
Padgett
, “
Single-pixel imaging 12 years on: A review
,”
Opt. Express
28
(
19
),
28190
28208
(
2020
).
4.
L.
McMackin
,
M. A.
Herman
,
B.
Chatterjee
, and
M.
Weldon
, “
A high-resolution SWIR camera via compressed sensing
,”
Proc. SPIE
8353
,
835303
(
2012
).
5.
J.
Ke
and
E. Y.
Lam
, “
Object reconstruction in block-based compressive imaging
,”
Opt. Express
20
(
20
),
22102
22117
(
2012
).
6.
A.
Mahalanobis
,
R.
Shilling
,
R.
Murphy
, and
R.
Muise
, “
Recent results of medium wave infrared compressive sensing
,”
Appl. Opt.
53
(
34
),
8060
8070
(
2014
).
7.
H.
Chen
,
M. S.
Asif
,
A. C.
Sankaranarayanan
, and
A.
Veeraraghavan
, “
FPA-CS: Focal plane array-based compressive imaging in short-wave infrared
,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(
IEEE
,
2015
), pp.
2358
2366
.
8.
Z.
Wu
and
X.
Wang
, “
Focal plane array-based compressive imaging in medium wave infrared: Modeling, implementation, and challenges
,”
Appl. Opt.
58
(
31
),
8433
8441
(
2019
).
9.
Y.
Cai
,
S.
Li
,
W.
Zhang
,
H.
Wu
,
X.
Yao
, and
Q.
Zhao
, “
A detail-enhanced sampling strategy in Hadamard single-pixel imaging
,”
Chin. Opt. Lett.
21
(
7
),
071101
(
2023
).
10.
M.-J.
Sun
,
L. T.
Meng
,
M.
Edgar
,
M.
Padgett
, and
N.
Radwell
, “
A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging
,”
Sci. Rep.
7
,
3464
(
2017
).
11.
W.-K.
Yu
, “
Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort
,”
Sensors
19
(
19
),
4122
(
2019
).
12.
X.
Yu
,
R.
Stantchev
,
F.
Yang
, and
E.
Pickwell-MacPherson
, “
Super sub-Nyquist single-pixel imaging by total variation ascending ordering of the Hadamard basis
,”
Sci. Rep.
10
,
6
(
2020
).
13.
Z.
Zhang
,
X.
Wang
,
G.
Zheng
, and
J.
Zhong
, “
Hadamard single-pixel imaging versus Fourier single-pixel imaging
,”
Opt. Express
25
(
16
),
19619
19639
(
2017
).
14.
B. I.
Erkmen
and
J. H.
Shapiro
, “
Ghost imaging: From quantum to classical to computational
,”
Adv. Opt. Photonics
2
(
4
),
405
450
(
2010
).
15.
C.
Li
,
An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing
(
Rice University
,
2010
).
16.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
17.
G.
Barbastathis
,
A.
Ozcan
, and
G.
Situ
, “
On the use of deep learning for computational imaging
,”
Optica
6
(
8
),
921
943
(
2019
).
18.
C.
Higham
,
R.
Murray-Smith
,
M.
Padgett
, and
M.
Edgar
, “
Deep learning for real-time single-pixel video
,”
Sci. Rep.
8
,
2369
(
2018
).
19.
F.
Wang
,
C.
Wang
,
M.
Chen
,
W.
Gong
,
Y.
Zhang
,
S.
Han
, and
G.
Situ
, “
Far-field super-resolution ghost imaging with a deep neural network constraint
,”
Light
11
(
1
),
1
(
2022
).
20.
Z.
Geng
,
Z.
Sun
,
Y.
Chen
,
X.
Lu
,
T.
Tian
,
G.
Cheng
, and
X.
Li
, “
Multi-input mutual supervision network for computational imaging
,”
Opt. Express
32
,
13224
(
2024
).
21.
F.
Wang
,
C.
Wang
,
C.
Deng
,
S.
Han
, and
G.
Situ
, “
Single-pixel imaging using physics enhanced deep learning
,”
Photonics Res.
10
(
1
),
104
110
(
2022
).
22.
L.
Zhang
,
J.
Ke
,
S.
Chi
,
X.
Hao
,
T.
Yang
, and
D.
Cheng
, “
High-resolution fast mid-wave infrared compressive imaging
,”
Opt. Lett.
46
(
10
),
2469
2472
(
2021
).
23.
J. P.
Dumas
,
M. A.
Lodhi
,
W. U.
Bajwa
, and
M. C.
Pierce
, “
Computational imaging with a highly parallel image-plane-coded architecture: Challenges and solutions
,”
Opt. Express
24
(
6
),
6145
6155
(
2016
).
24.
X.
Yuan
and
Y.
Pu
, “
Parallel lensless compressive imaging via deep convolutional neural networks
,”
Opt. Express
26
(
2
),
1962
1977
(
2018
).
25.
S.
Nayar
,
V.
Branzoi
, and
T.
Boult
, “
Programmable imaging: Towards a flexible camera
,”
Int. J. Comput. Vision
70
,
7
22
(
2006
).
26.
X.-P.
Jin
,
A.-D.
Xiong
,
X.-Q.
Wang
,
X.-R.
Yao
,
X.-F.
Liu
, and
Q.
Zhao
, “
Long-distance mid-wave infrared super-resolution compressive imaging
,”
Opt. Laser Technol.
157
,
108740
(
2023
).
27.
O.
Ronneberger
,
P.
Fischer
, and
T.
Brox
, “
U-Net: Convolutional networks for biomedical image segmentation
,” in
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015)
, edited by
N.
Navab
,
J.
Hornegger
,
W. M.
Wells
, and
A. F.
Frangi
(
Springer International Publishing
,
Cham
,
2015
), pp.
234
241
.
28.
C.-H.
Lee
,
Z.
Liu
,
L.
Wu
, and
P.
Luo
, “
MaskGAN: Towards diverse and interactive facial image manipulation
,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(
IEEE
,
2020
), pp.
5548
5557
.
29.
Z.
Wang
,
A. C.
Bovik
,
H. R.
Sheikh
, and
E. P.
Simoncelli
, “
Image quality assessment: From error visibility to structural similarity
,”
IEEE Trans. Image Process.
13
(
4
),
600
612
(
2004
).
You do not currently have access to this content.