We consider magnetic Weyl metals as a platform to achieve current control of magnetization textures with transport currents utilizing their underlying band geometry. We show that the transport current in a Weyl semimetal produces an axial magnetization due to orbital magnetic moments of the Weyl electrons. The associated axial magnetization can generate a torque acting on the localized magnetic moments. For the case of a magnetic vortex in a nanodisk of Weyl materials, this current-induced torque can be used to reverse its circulation and polarity. We discuss the axial magnetization torques in Weyl metals on general symmetry grounds and compare their strength to current-induced torques in more conventional materials.
REFERENCES
1.
S. S.
Parkin
,
M.
Hayashi
, and
L.
Thomas
, Science
320
, 190
(2008
).2.
G.
Tatara
,
H.
Kohno
, and
J.
Shibata
, Phys. Rep.
468
, 213
(2008
).3.
H.-B.
Braun
and
D.
Loss
, J. Appl. Phys.
76
, 6177
(1994
).4.
S.
Takagi
and
G.
Tatara
, Phys. Rev. B
54
, 9920
(1996
).5.
L.
Caretta
,
M.
Mann
,
F.
Büttner
,
K.
Ueda
,
B.
Pfau
,
C. M.
Günther
,
P.
Hessing
,
A.
Churikova
,
C.
Klose
,
M.
Schneider
et al, Nat. Nanotechnol.
13
, 1154
(2018
).6.
C.
Psaroudaki
and
C.
Panagopoulos
, Phys. Rev. Lett.
127
, 067201
(2021
).7.
L. J.
Heyderman
,
J.
Grollier
,
C. H.
Marrows
,
P.
Vavassori
,
D.
Grundler
,
D.
Makarov
, and
S.
Pané
, Appl. Phys. Lett.
119
(8
), 080401
(2021
).8.
J.
Xia
,
X.
Zhang
,
X.
Liu
,
Y.
Zhou
, and
M.
Ezawa
, Commun. Mater.
3
, 88
(2022
).9.
R.
Jangid
,
N. Z.
Hagström
,
M.
Madhavi
,
K.
Rockwell
,
J. M.
Shaw
,
J. A.
Brock
,
M.
Pancaldi
,
D.
De Angelis
,
F.
Capotondi
,
E.
Pedersoli
et al, Phys. Rev. Lett.
131
, 256702
(2023
).10.
11.
I.
Žutić
,
J.
Fabian
, and
S. D.
Sarma
, Rev. Mod. Phys.
76
, 323
(2004
).12.
D. C.
Ralph
and
M. D.
Stiles
, J. Magn. Magn. Mater.
320
, 1190
(2008
).13.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
, Rev. Mod. Phys.
87
, 1213
(2015
).14.
A.
Manchon
,
J.
Železný
,
I. M.
Miron
,
T.
Jungwirth
,
J.
Sinova
,
A.
Thiaville
,
K.
Garello
, and
P.
Gambardella
, Rev. Mod. Phys.
91
, 035004
(2019
).15.
N.
Armitage
,
E.
Mele
, and
A.
Vishwanath
, Rev. Mod. Phys.
90
, 015001
(2018
).16.
D.
Kurebayashi
and
K.
Nomura
, Sci. Rep.
9
, 5365
(2019
).17.
J.-R.
Soh
,
F.
de Juan
,
M. G.
Vergniory
,
N. B. M.
Schröter
,
M. C.
Rahn
,
D. Y.
Yan
,
J.
Jiang
,
M.
Bristow
,
P.
Reiss
,
J. N.
Blandy
et al, Phys. Rev. B
100
, 201102
(2019
).18.
S.
Nie
,
T.
Hashimoto
, and
F. B.
Prinz
, Phys. Rev. Lett.
128
, 176401
(2022
).19.
D.
Santos-Cottin
,
I.
Mohelský
,
J.
Wyzula
,
F.
Le Mardelé
,
I.
Kapon
,
S.
Nasrallah
,
N.
Barišić
,
I.
Živković
,
J. R.
Soh
,
F.
Guo
et al, Phys. Rev. Lett.
131
, 186704
(2023
).20.
J.
Ma
and
D. A.
Pesin
, Phys. Rev. B
92
, 235205
(2015
).21.
J.
Rou
,
C.
Şahin
,
J.
Ma
, and
D. A.
Pesin
, Phys. Rev. B
96
, 035120
(2017
).22.
D.
Xiao
,
M.-C.
Chang
, and
Q.
Niu
, Rev. Mod. Phys.
82
, 1959
(2010
).23.
J. F.
Steiner
,
A. V.
Andreev
, and
D. A.
Pesin
, Phys. Rev. Lett.
119
, 036601
(2017
).24.
Y.
Araki
, Ann. Phys.
532
, 1900287
(2020
).25.
R.
Ilan
,
A. G.
Grushin
, and
D. I.
Pikulin
, Nat. Rev. Phys.
2
, 29
(2019
).26.
27.
S.
Roychowdhury
,
M.
Yao
,
K.
Samanta
,
S.
Bae
,
D.
Chen
,
S.
Ju
,
A.
Raghavan
,
N.
Kumar
,
P.
Constantinou
,
S. N.
Guin
et al, Adv. Sci.
10
, 2207121
(2023
).28.
W. A. S.
Aldulaimi
,
M. B.
Okatan
,
K.
Sendur
,
M.
Onbasli
, and
I.
Misirlioglu
, Nanoscale
15
, 707
(2023
).29.
J.
Hannukainen
,
A.
Cortijo
,
J. H.
Bardarson
, and
Y.
Ferreiros
, SciPost Phys.
10
, 102
(2021
).30.
R.
Freeman
,
A.
Zholud
,
Z.
Dun
,
H.
Zhou
, and
S.
Urazhdin
, Phys. Rev. Lett.
120
, 067204
(2018
).31.
W.
Zhang
,
V.
Vlaminck
,
J. E.
Pearson
,
R.
Divan
,
S. D.
Bader
, and
A.
Hoffmann
, Appl. Phys. Lett.
103
(24
), 242414
(2013
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.