We consider magnetic Weyl metals as a platform to achieve current control of magnetization textures with transport currents utilizing their underlying band geometry. We show that the transport current in a Weyl semimetal produces an axial magnetization due to orbital magnetic moments of the Weyl electrons. The associated axial magnetization can generate a torque acting on the localized magnetic moments. For the case of a magnetic vortex in a nanodisk of Weyl materials, this current-induced torque can be used to reverse its circulation and polarity. We discuss the axial magnetization torques in Weyl metals on general symmetry grounds and compare their strength to current-induced torques in more conventional materials.

1.
S. S.
Parkin
,
M.
Hayashi
, and
L.
Thomas
,
Science
320
,
190
(
2008
).
2.
G.
Tatara
,
H.
Kohno
, and
J.
Shibata
,
Phys. Rep.
468
,
213
(
2008
).
3.
H.-B.
Braun
and
D.
Loss
,
J. Appl. Phys.
76
,
6177
(
1994
).
4.
S.
Takagi
and
G.
Tatara
,
Phys. Rev. B
54
,
9920
(
1996
).
5.
L.
Caretta
,
M.
Mann
,
F.
Büttner
,
K.
Ueda
,
B.
Pfau
,
C. M.
Günther
,
P.
Hessing
,
A.
Churikova
,
C.
Klose
,
M.
Schneider
et al,
Nat. Nanotechnol.
13
,
1154
(
2018
).
6.
C.
Psaroudaki
and
C.
Panagopoulos
,
Phys. Rev. Lett.
127
,
067201
(
2021
).
7.
L. J.
Heyderman
,
J.
Grollier
,
C. H.
Marrows
,
P.
Vavassori
,
D.
Grundler
,
D.
Makarov
, and
S.
Pané
,
Appl. Phys. Lett.
119
(
8
),
080401
(
2021
).
8.
J.
Xia
,
X.
Zhang
,
X.
Liu
,
Y.
Zhou
, and
M.
Ezawa
,
Commun. Mater.
3
,
88
(
2022
).
9.
R.
Jangid
,
N. Z.
Hagström
,
M.
Madhavi
,
K.
Rockwell
,
J. M.
Shaw
,
J. A.
Brock
,
M.
Pancaldi
,
D.
De Angelis
,
F.
Capotondi
,
E.
Pedersoli
et al,
Phys. Rev. Lett.
131
,
256702
(
2023
).
10.
A.
Fert
,
R.
Ramesh
,
V.
Garcia
,
F.
Casanova
, and
M.
Bibes
, arXiv:2311.11724 (
2023
).
11.
I.
Žutić
,
J.
Fabian
, and
S. D.
Sarma
,
Rev. Mod. Phys.
76
,
323
(
2004
).
12.
D. C.
Ralph
and
M. D.
Stiles
,
J. Magn. Magn. Mater.
320
,
1190
(
2008
).
13.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
,
Rev. Mod. Phys.
87
,
1213
(
2015
).
14.
A.
Manchon
,
J.
Železný
,
I. M.
Miron
,
T.
Jungwirth
,
J.
Sinova
,
A.
Thiaville
,
K.
Garello
, and
P.
Gambardella
,
Rev. Mod. Phys.
91
,
035004
(
2019
).
15.
N.
Armitage
,
E.
Mele
, and
A.
Vishwanath
,
Rev. Mod. Phys.
90
,
015001
(
2018
).
16.
D.
Kurebayashi
and
K.
Nomura
,
Sci. Rep.
9
,
5365
(
2019
).
17.
J.-R.
Soh
,
F.
de Juan
,
M. G.
Vergniory
,
N. B. M.
Schröter
,
M. C.
Rahn
,
D. Y.
Yan
,
J.
Jiang
,
M.
Bristow
,
P.
Reiss
,
J. N.
Blandy
et al,
Phys. Rev. B
100
,
201102
(
2019
).
18.
S.
Nie
,
T.
Hashimoto
, and
F. B.
Prinz
,
Phys. Rev. Lett.
128
,
176401
(
2022
).
19.
D.
Santos-Cottin
,
I.
Mohelský
,
J.
Wyzula
,
F.
Le Mardelé
,
I.
Kapon
,
S.
Nasrallah
,
N.
Barišić
,
I.
Živković
,
J. R.
Soh
,
F.
Guo
et al,
Phys. Rev. Lett.
131
,
186704
(
2023
).
20.
J.
Ma
and
D. A.
Pesin
,
Phys. Rev. B
92
,
235205
(
2015
).
21.
J.
Rou
,
C.
Şahin
,
J.
Ma
, and
D. A.
Pesin
,
Phys. Rev. B
96
,
035120
(
2017
).
22.
D.
Xiao
,
M.-C.
Chang
, and
Q.
Niu
,
Rev. Mod. Phys.
82
,
1959
(
2010
).
23.
J. F.
Steiner
,
A. V.
Andreev
, and
D. A.
Pesin
,
Phys. Rev. Lett.
119
,
036601
(
2017
).
24.
25.
R.
Ilan
,
A. G.
Grushin
, and
D. I.
Pikulin
,
Nat. Rev. Phys.
2
,
29
(
2019
).
26.
W. F.
Brown
,
Micromagnetics
(
Wiley
,
New York
,
1963
).
27.
S.
Roychowdhury
,
M.
Yao
,
K.
Samanta
,
S.
Bae
,
D.
Chen
,
S.
Ju
,
A.
Raghavan
,
N.
Kumar
,
P.
Constantinou
,
S. N.
Guin
et al,
Adv. Sci.
10
,
2207121
(
2023
).
28.
W. A. S.
Aldulaimi
,
M. B.
Okatan
,
K.
Sendur
,
M.
Onbasli
, and
I.
Misirlioglu
,
Nanoscale
15
,
707
(
2023
).
29.
J.
Hannukainen
,
A.
Cortijo
,
J. H.
Bardarson
, and
Y.
Ferreiros
,
SciPost Phys.
10
,
102
(
2021
).
30.
R.
Freeman
,
A.
Zholud
,
Z.
Dun
,
H.
Zhou
, and
S.
Urazhdin
,
Phys. Rev. Lett.
120
,
067204
(
2018
).
31.
W.
Zhang
,
V.
Vlaminck
,
J. E.
Pearson
,
R.
Divan
,
S. D.
Bader
, and
A.
Hoffmann
,
Appl. Phys. Lett.
103
(
24
),
242414
(
2013
).
You do not currently have access to this content.