Acoustic manipulation using surface acoustic wave has aroused widespread interest in life sciences, biomedical, and bioanalytical chemistry. Acoustic manipulation for different applications requires different acoustic fields. Bessel beams are non-diffractive and re-constructable, bringing possibility and versatility of acoustic manipulation integrated on microfluidic chips. To date, there are a few studies on constructing Bessel surface acoustic waves. Moreover, there is still a lack of dynamic acoustic manipulation using Bessel surface acoustic waves propagating along a surface of piezoelectric substrate with simple and high-precision devices. Here, we design a device with two omnidirectional equifrequency interdigital transducers to form a quasi-Bessel surface acoustic wave by means of coherent interference. The proposed device avoids influences of anisotropy on its operating frequency, making its quasi-Bessel beam accurately and stably conform to the predetermined design acoustic field. This acoustic field could control micrometer to submicrometer particles and dynamically move particles along lateral direction and axial direction of the propagation of quasi-Bessel beam. A phenomenon similar to negative force appeared when the two-micron spherical particles were manipulated. The quasi-Bessel beam formed by our device can provide a versatile movement for on-chip acoustic manipulation.

1.
H.
Nam
,
J. E.
Park
,
W.
Waheed
,
A.
Alazzam
,
H. J.
Sung
, and
J. S.
Jeon
,
Lab Chip
23
(
18
),
4117
4125
(
2023
).
2.
S.
Yang
,
Z.
Tian
,
Z.
Wang
,
J.
Rufo
,
P.
Li
,
J.
Mai
,
J.
Xia
,
H.
Bachman
,
P.-H.
Huang
,
M.
Wu
,
C.
Chen
,
L. P.
Lee
, and
T. J.
Huang
,
Nat. Mater.
21
(
5
),
540
546
(
2022
).
3.
Z.
Deng
,
V. V.
Kondalkar
,
C.
Cierpka
,
H.
Schmidt
, and
J.
König
,
Lab Chip
23
(
9
),
2154
2160
(
2023
).
4.
S. H.
Lee
,
B.
Cha
,
J.
Ko
,
M.
Afzal
, and
J.
Park
,
Biomicrofluidics
17
(
2
),
024105
(
2023
).
5.
J.
Zhang
,
C.
Chen
,
R.
Becker
,
J.
Rufo
,
S.
Yang
,
J.
Mai
,
P.
Zhang
,
Y.
Gu
,
Z.
Wang
,
Z.
Ma
,
J.
Xia
,
N.
Hao
,
Z.
Tian
,
D. T. W.
Wong
,
Y.
Sadovsky
,
L. P.
Lee
, and
T. J.
Huang
,
Sci. Adv.
8
(
47
),
eade0640
(
2022
).
6.
Z.
Ma
,
A. W.
Holle
,
K.
Melde
,
T.
Qiu
,
K.
Poeppel
,
V. M.
Kadiri
, and
P.
Fischer
,
Adv. Mater.
32
(
4
),
1904181
(
2020
).
7.
M.
Baudoin
,
J.-L.
Thomas
,
R. A.
Sahely
,
J.-C.
Gerbedoen
,
Z.
Gong
,
A.
Sivery
,
O. B.
Matar
,
N.
Smagin
,
P.
Favreau
, and
A.
Vlandas
,
Nat. Commun.
11
(
1
),
4244
(
2020
).
8.
B.
Kang
,
J.
Shin
,
H.-J.
Park
,
C.
Rhyou
,
D.
Kang
,
S.-J.
Lee
,
Y-s
Yoon
,
S.-W.
Cho
, and
H.
Lee
,
Nat. Commun.
9
(
1
),
5402
(
2018
).
9.
D. J.
Collins
,
B.
Morahan
,
J.
Garcia-Bustos
,
C.
Doerig
,
M.
Plebanski
, and
A.
Neild
,
Nat. Commun.
6
(
1
),
8686
(
2015
).
10.
Z.
Tian
,
S.
Yang
,
P.-H.
Huang
,
Z.
Wang
,
P.
Zhang
,
Y.
Gu
,
H.
Bachman
,
C.
Chen
,
M.
Wu
,
Y.
Xie
, and
T. J.
Huang
,
Sci. Adv.
5
(
5
),
eaau6062
(
2019
).
11.
M.
Baudoin
,
J.-C.
Gerbedoen
,
A.
Riaud
,
O. B.
Matar
,
N.
Smagin
, and
J.-L.
Thomas
,
Sci. Adv.
5
(
4
),
eaav1967
(
2019
).
12.
A.
Riaud
,
M.
Baudoin
,
J. L.
Thomas
, and
O. B.
Matar
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
63
(
10
),
1601
1607
(
2016
).
13.
R.
Antoine
,
T.
Jean-Louis
,
C.
Eric
,
B.
Adrien
,
B. M.
Olivier
, and
B.
Michael
,
Phys. Rev. Appl.
4
(
3
),
034004
(
2015
).
14.
V.
Laude
,
D.
Gérard
,
N.
Khelfaoui
,
C. F.
Jerez-Hanckes
,
S.
Benchabane
, and
A.
Khelif
,
Appl. Phys. Lett.
92
(
9
),
094104
(
2008
).
15.
A.
Riaud
,
J.-L.
Thomas
,
M.
Baudoin
, and
O.
Bou Matar
,
Phys. Rev. E
92
(
6
),
063201
(
2015
).
16.
P.
Kang
,
Z.
Tian
,
S.
Yang
,
W.
Yu
,
H.
Zhu
,
H.
Bachman
,
S.
Zhao
,
P.
Zhang
,
Z.
Wang
,
R.
Zhong
, and
T. J.
Huang
,
Lab Chip
20
(
5
),
987
994
(
2020
).
17.
B.
Chen
,
Y.
Wu
,
Z.
Ao
,
H.
Cai
,
A.
Nunez
,
Y.
Liu
,
J.
Foley
,
K.
Nephew
,
X.
Lu
, and
F.
Guo
,
Lab Chip
19
(
10
),
1755
1763
(
2019
).
18.
L.
Meng
,
X.
Cui
,
C.
Dong
,
X.
Liu
,
W.
Zhou
,
W.
Zhang
,
X.
Wang
,
L.
Niu
,
F.
Li
,
F.
Cai
,
J.
Wu
, and
H.
Zheng
,
Appl. Phys. Lett.
116
(
7
),
073701
(
2020
).
19.
R. M.
Power
and
J.
Huisken
,
Nat. Methods
14
(
4
),
360
373
(
2017
).
20.
B.
Ulug
,
F.
Kuruoğlu
,
Y.
Yalçın
,
A.
Erol
,
F.
Sarcan
,
A.
Şahin
, and
A.
Cicek
,
J. Phys. D
55
(
22
),
225303
(
2022
).
21.
R.
O'Rorke
,
A.
Winkler
,
D.
Collins
, and
Y.
Ai
,
RSC Adv.
10
(
20
),
11582
11589
(
2020
).
22.
R.
Weser
,
A.
Winkler
,
M.
Weihnacht
,
S.
Menzel
, and
H.
Schmidt
,
Ultrasonics
106
,
106160
(
2020
).
23.
K. Y.
Wang
,
W.
Zhou
,
Z. G.
Lin
,
F. Y.
Cai
,
F.
Li
,
J. R.
Wu
,
L.
Meng
,
L. L.
Niu
, and
H. R.
Zheng
,
Sensor Actuators, B
258
,
1174
1183
(
2018
).
24.
L. P.
Gorkov
,
Dokl. Akad. Nauk SSSR
140
(
1
),
88
91
(
1961
); available at https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=25473&option_lang=eng
25.
P. L.
Marston
,
J. Acoust. Soc. Am.
120
(
6
),
3518
3524
(
2006
).
26.
M.
Azarpeyvand
,
J. Acoust. Soc. Am.
136
(
2
),
547
555
(
2014
).
27.
D.
Ershov
,
M.-S.
Phan
,
J. W.
Pylvänäinen
,
S. U.
Rigaud
,
L.
Le Blanc
,
A.
Charles-Orszag
,
J. R. W.
Conway
,
R. F.
Laine
,
N. H.
Roy
,
D.
Bonazzi
,
G.
Duménil
,
G.
Jacquemet
, and
J.-Y.
Tinevez
,
Nat. Methods
19
(
7
),
829
832
(
2022
).
28.
T. D.
Nguyen
,
V. T.
Tran
,
Y. Q.
Fu
, and
H.
Du
,
Appl. Phys. Lett.
112
(
21
),
213507
(
2018
).
You do not currently have access to this content.