In recent years, high-performance thin-film lithium niobate (TFLN) electro-optic (EO) modulators boost the fast development of highly integrated, low loss, and large comb spacing EO frequency combs. Furthermore, ultra-short optical pulse trains (USOPTs) can be generated by the temporal domain compression of the optical frequency comb, which play an essential role in photonic sampling analog-to-digital conversion. Here, we demonstrate a flat and broadband EO frequency comb based on a packaged TFLN chip including a monolithic integrated intensity modulator, a phase modulator, and edge couplers. The 25 comb lines with a power fluctuation less than 3 dB are presented successfully. Moreover, we obtain a 10 GHz repetition rate USOPT, the pulse width of which is compressed to 2.67 ps. Our device may find its applications in the fields of ultrafast measurement, wavelength-division-multiplexing optical communication, or high-precision photonic sampling.

1.
L.
Chang
,
S.
Liu
, and
J. E.
Bowers
, “
Integrated optical frequency comb technologies
,”
Nat. Photonics
16
,
95
108
(
2022
).
2.
T.
Fortier
and
E.
Baumann
, “
20 years of developments in optical frequency comb technology and applications
,”
Commun. Phys.
2
,
153
(
2019
).
3.
N.
Picqué
and
T. W.
Hänsch
, “
Frequency comb spectroscopy
,”
Nat. Photonics
13
,
146
157
(
2019
).
4.
T.
Udem
,
R.
Holzwarth
, and
T. W.
Hänsch
, “
Optical frequency metrology
,”
Nature
416
,
233
237
(
2002
).
5.
P.
Marin-Palomo
,
J. N.
Kemal
,
M.
Karpov
,
A.
Kordts
,
J.
Pfeifle
,
M. H. P.
Pfeiffer
,
P.
Trocha
,
S.
Wolf
,
V.
Brasch
,
M. H.
Anderson
,
R.
Rosenberger
,
K.
Vijayan
,
W.
Freude
,
T. J.
Kippenberg
, and
C.
Koos
, “
Microresonator-based solitons for massively parallel coherent optical communications
,”
Nature
546
,
274
279
(
2017
).
6.
J.
Kim
and
Y.
Song
, “
Ultralow-noise mode-locked fiber lasers and frequency combs: Principles, status, and applications
,”
Adv. Opt. Photonics
8
,
465
540
(
2016
).
7.
T. J.
Kippenberg
,
R.
Holzwarth
, and
S. A.
Diddams
, “
Microresonator-based optical frequency combs
,”
Science
332
,
555
559
(
2011
).
8.
A.
Parriaux
,
K.
Hammani
, and
G.
Millot
, “
Electro-optic frequency combs
,”
Adv. Opt. Photonics
12
,
223
287
(
2020
).
9.
M.
Kourogi
,
K.
Nakagawa
, and
M.
Ohtsu
, “
Wide-span optical frequency comb generator for accurate optical frequency difference measurement
,”
IEEE J. Quantum Electron.
29
,
2693
2701
(
1993
).
10.
M.
Yu
,
D.
Barton Iii
,
R.
Cheng
,
C.
Reimer
,
P.
Kharel
,
L.
He
,
L.
Shao
,
D.
Zhu
,
Y.
Hu
,
H. R.
Grant
,
L.
Johansson
,
Y.
Okawachi
,
A. L.
Gaeta
,
M.
Zhang
, and
M.
Lončar
, “
Integrated femtosecond pulse generator on thin-film lithium niobate
,”
Nature
612
,
252
258
(
2022
).
11.
A. J.
Metcalf
,
V.
Torres-Company
,
D. E.
Leaird
, and
A. M.
Weiner
, “
High-power broadly tunable electrooptic frequency comb generator
,”
IEEE J. Select. Top. Quantum Electron.
19
,
231
236
(
2013
).
12.
X.
Zhang
,
J.
Zhang
,
K.
Yin
,
Y.
Li
,
X.
Zheng
, and
T.
Jiang
, “
Sub-100 fs all-fiber broadband electro-optic optical frequency comb at 1.5 μm
,”
Opt. Express
28
,
34761
34771
(
2020
).
13.
P.
Sekhar
,
C.
Fredrick
,
D. R.
Carlson
,
Z. L.
Newman
, and
S. A.
Diddams
, “
20 GHz fiber-integrated femtosecond pulse and supercontinuum generation with a resonant electro-optic frequency comb
,”
APL Photonics
8
,
116111
(
2023
).
14.
Y.-S.
Jang
,
J.
Park
, and
J.
Jin
, “
Comb-mode resolved spectral domain interferometer enabled by a broadband electro-optic frequency comb
,”
Photonics Res.
11
,
72
80
(
2023
).
15.
K. P.
Nagarjun
,
V.
Jeyaselvan
,
S. K.
Selvaraja
, and
V. R.
Supradeepa
, “
Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators
,”
Opt. Express
26
,
10744
10753
(
2018
).
16.
I.
Demirtzioglou
,
C.
Lacava
,
K. R. H.
Bottrill
,
D. J.
Thomson
,
G. T.
Reed
,
D. J.
Richardson
, and
P.
Petropoulos
, “
Frequency comb generation in a silicon ring resonator modulator
,”
Opt. Express
26
,
790
796
(
2018
).
17.
N.
Andriolli
,
T.
Cassese
,
M.
Chiesa
,
C.
de Dios
, and
G.
Contestabile
, “
Photonic integrated fully tunable comb generator cascading optical modulators
,”
J. Lightwave Technol.
36
,
5685
5689
(
2018
).
18.
N.
Yokota
and
H.
Yasaka
, “
Operation strategy of InP Mach–Zehnder modulators for flat optical frequency comb generation
,”
IEEE J. Quantum Electron.
52
,
5200207
(
2016
).
19.
M.
Xu
,
M.
He
,
Y.
Zhu
,
S.
Yu
, and
X.
Cai
, “
Flat optical frequency comb generator based on integrated lithium niobate modulators
,”
J. Lightwave Technol.
40
,
339
345
(
2022
).
20.
K.
Zhang
,
W.
Sun
,
Y.
Chen
,
H.
Feng
,
Y.
Zhang
,
Z.
Chen
, and
C.
Wang
, “
A power-efficient integrated lithium niobate electro-optic comb generator
,”
Commun. Phys.
6
,
17
(
2023
).
21.
R.
Zhuang
,
K.
Ni
,
G.
Wu
,
T.
Hao
,
L.
Lu
,
Y.
Li
, and
Q.
Zhou
, “
Electro-optic frequency combs: Theory, characteristics, and applications
,”
Laser Photonics Rev.
17
,
2200353
(
2023
).
22.
Y.
Dou
,
H.
Zhang
, and
M.
Yao
, “
Generation of flat optical-frequency comb using cascaded intensity and phase modulators
,”
IEEE Photonics Technol. Lett.
24
,
727
729
(
2012
).
23.
Y.
Zhang
,
X.
Wang
,
Z.
Li
,
W.
Lyu
,
Y.
Lyu
,
C.
Zeng
,
Z.
Zhang
,
S.
Zhang
,
Y.
Zhang
,
H.
Li
,
J.
Xia
, and
Y.
Liu
, “
Flat optical frequency comb generation based on monolithic integrated LNOI intensity and phase modulator
,”
Photonics
9
,
495
(
2022
).
24.
M.
Xu
,
Y.
Zhu
,
F.
Pittalà
,
J.
Tang
,
M.
He
,
W. C.
Ng
,
J.
Wang
,
Z.
Ruan
,
X.
Tang
,
M.
Kuschnerov
,
L.
Liu
,
S.
Yu
,
B.
Zheng
, and
X.
Cai
, “
Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission
,”
Optica
9
,
61
62
(
2022
).
25.
S.
Yongqiang
,
Y.
Lianshan
, and
A. E.
Willner
, “
High-speed electrooptic modulator characterization using optical spectrum analysis
,”
J. Lightwave Technol.
21
,
2358
2367
(
2003
).
You do not currently have access to this content.