Porous carbons have attracted substantial interest within the realm of energy storage applications. However, their traditional production methods often involve the use of elevated temperatures. In this study, we introduce a simple technique to transform titanium silicon carbide (Ti3SiC2) MAX phases into porous carbons, known as carbide-derived carbons (CDCs), at room temperature by selective etching of the metal atoms (Ti and Si). We investigate how temperature affects the activation of CDCs so formed with potassium hydroxide to enhance their electrochemical properties. Our results unveil the remarkable potential of CDCs activated at 700 °C, demonstrating superior electrochemical performance with a specific capacitance of 198 F g−1 at a scan rate of 20 mV s−1 in a three-electrode configuration. The symmetric supercapacitor based on CDC-700 maintains a respectable specific capacitance of 98 F g−1 at 1 A g−1 and an energy density of 13.7 Wh kg−1 at a power density of 1 kW kg−1. This cost-effective approach offers a pathway for large-scale CDC production, with excellent specific supercapacitor characteristics, promising advancements in energy storage technology.

1.
M. D.
Stoller
,
S.
Park
,
Y.
Zhu
,
J.
An
, and
R. S.
Ruoff
, “
Graphene-based ultracapacitors
,”
Nano Lett.
8
(
10
),
3498
3502
(
2008
).
2.
V. V.
Mohan
,
K. C.
Akshaya
, and
K. P.
Vijayakumar
, “
Type conversion as well as bandgap tuning of sprayed SnS thin film and initial trials on heterojunction diodes
,”
Mater. Today Proc.
(published online,
2023
).
3.
W.
Zheng
,
L.
Yang
,
P.
Zhang
,
V.
Natu
,
Z.
Sun
,
J.
Rosen
, and
M. W.
Barsoum
, “
Mass loading and self-discharge challenges for MXene-based aqueous supercapacitors
,”
Energy Storage Mater.
63
,
103037
(
2023
).
4.
R.
Shilpa
,
K. S.
Sibi
,
R. K.
Pai
,
S. R.
Sarath Kumar
, and
R. B.
Rakhi
, “
Electrocatalytic water splitting for efficient hydrogen evolution using molybdenum disulfide nanomaterials
,”
Mater. Sci. Eng. B
285
,
115930
(
2022
).
5.
V. V.
Mohan
,
M.
Manuraj
,
P. M.
Anjana
, and
R. B.
Rakhi
, “
WS2 nanoflowers as efficient electrode materials for supercapacitors
,”
Energy Technol.
10
,
2100976
(
2022
).
6.
V. V.
Mohan
,
P. M.
Anjana
, and
R. B.
Rakhi
, “
A study on the effect of phase conversion of tungsten nanostructures on their electrochemical energy storage performance
,”
Mater. Adv.
3
(
14
),
5900
5910
(
2022
).
7.
C.
Portet
,
G.
Yushin
, and
Y.
Gogotsi
, “
Effect of carbon particle size on electrochemical performance of EDLC
,”
J. Electrochem. Soc.
155
(
7
),
A531
(
2008
).
8.
C.
Liu
,
Z.
Yu
,
D.
Neff
,
A.
Zhamu
, and
B. Z.
Jang
, “
Graphene-based supercapacitor with an ultrahigh energy density
,”
Nano Lett.
10
(
12
),
4863
4868
(
2010
).
9.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
(
3
),
183
191
(
2007
).
10.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5696
),
666
669
(
2004
).
11.
S.
Wu
,
G.
Chen
,
N. Y.
Kim
,
K.
Ni
,
W.
Zeng
,
Y.
Zhao
,
Z.
Tao
,
H.
Ji
,
Z.
Lee
, and
Y.
Zhu
, “
Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance
,”
Small
12
(
17
),
2376
2384
(
2016
).
12.
X.
Yin
,
W.
Zheng
,
H.
Tang
,
P.
Zhang
, and
Z.
Sun
, “
Novel 2D/2D 1T-MoS2/Ti3C2Tz heterostructures for high-voltage symmetric supercapacitors
,”
Nanoscale
15
(
24
),
10437
10446
(
2023
).
13.
J.
Wang
and
S.
Kaskel
, “
KOH activation of carbon-based materials for energy storage
,”
J. Mater. Chem.
22
(
45
),
23710
23725
(
2012
).
14.
M. R.
Lukatskaya
,
J.
Halim
,
B.
Dyatkin
,
M.
Naguib
,
Y. S.
Buranova
,
M. W.
Barsoum
, and
Y.
Gogotsi
, “
Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases
,”
Angew. Chem., Int. Ed.
53
(
19
),
4877
4880
(
2014
).
15.
Y.
Gogotsi
,
A.
Nikitin
,
H.
Ye
,
W.
Zhou
,
J. E.
Fischer
,
B.
Yi
,
H. C.
Foley
, and
M. W.
Barsoum
, “
Nanoporous carbide-derived carbon with tunable pore size
,”
Nat. Mater.
2
(
9
),
591
594
(
2003
).
16.
M.
Zhong
,
H.
Liu
,
M.
Wang
,
Y. W.
Zhu
,
X. Y.
Chen
, and
Z. J.
Zhang
, “
Hierarchically N/O-enriched nanoporous carbon for supercapacitor application: Simply adjusting the composition of deep eutectic solvent as well as the ratio with phenol-formaldehyde resin
,”
J. Power Sources
438
,
226982
(
2019
).
17.
A.
Jänes
,
L.
Permann
,
M.
Arulepp
, and
E.
Lust
, “
Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions
,”
Electrochem. Commun.
6
(
3
),
313
318
(
2004
).
18.
K. C.
Akshaya
,
V. V.
Mohan
, and
K. P.
Vijayakumar
, “
Chemically sprayed p-type CuS thin film-characterization and feasibility study on junction with n-Si for the development of solar cell
,” in
5th IEEE International Conference on Emerging Electronics (ICEE)
(
IEEE
,
2020
).
19.
V. V.
Mohan
,
K. C.
Akshaya
, and
K. P.
Vijayakumar
, “
Fabrication of p-type and n-type SnS thin films through vacuum-free deposition techniques
,”
Mater. Today Proc.
(published online
2023
).
20.
V. V.
Mohan
,
K. C.
Akshaya
,
A. S.
Asha
,
M. K.
Jayaraj
, and
K. P.
Vijayakumar
, “
Effect of substrate temperature on the optoelectronic properties of chemically sprayed SnS thin films
,”
Mater. Today Proc.
39
,
1978
1980
(
2019
).
21.
Y.
Korenblit
,
M.
Rose
,
E.
Kockrick
,
L.
Borchardt
,
A. V.
Kvit
,
S.
Kaskel
, and
G. N.
Yushin
, “
High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon
,”
ACS Nano
4
(
3
),
1337
1344
(
2010
).
22.
Y.
Zhao
,
W.
Wang
,
D.-B.
Xiong
,
G.
Shao
,
W.
Xia
,
S.
Yu
, and
F.
Gao
, “
Titanium carbide derived nanoporous carbon for supercapacitor applications
,”
Int. J. Hydrogen Energy
37
(
24
),
19395
19400
(
2012
).
23.
C. R.
Pérez
,
S.-H.
Yeon
,
J.
Ségalini
,
V.
Presser
,
P.-L.
Taberna
,
P.
Simon
, and
Y.
Gogotsi
, “
Structure and electrochemical performance of carbide-derived carbon nanopowders
,”
Adv. Funct. Mater.
23
(
8
),
1081
1089
(
2013
).
24.
J.
Xu
,
C.
Wu
,
P.
Yan
,
J.
Wang
,
R.
Zhang
,
X.
Zhang
, and
J.
Jin
, “
Enhanced electrochemical performance of graphitized carbide-derived carbon in alkaline electrolyte
,”
Electrochim. Acta
174
,
411
416
(
2015
).
25.
X.-Y.
Liu
,
M.
Huang
,
H.-L.
Ma
,
Z.-Q.
Zhang
,
J.-M.
Gao
,
Y.-L.
Zhu
,
X.-J.
Han
, and
X.-Y.
Guo
, “
Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process
,”
Molecules
15
,
7188
7196
(
2010
).
26.
G. N.
Yushin
,
E. N.
Hoffman
,
A.
Nikitin
,
H.
Ye
,
M. W.
Barsoum
, and
Y.
Gogotsi
, “
Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide
,”
Carbon
43
(
10
),
2075
2082
(
2005
).
27.
N.
Keppetipola
,
M.
Dissanayake
,
P. N.
Dissanayake
,
B.
Karunarathne
,
M.
Dourges
,
D.
Talaga
,
L.
Servant
,
C.
Olivier
,
T.
Toupance
,
S.
Uchida
,
K.
Tennakone
,
G.
Kumara
, and
L.
Cojocaru
, “
Graphite-type activated carbon from coconut shell: A natural source for eco-friendly non-volatile storage devices
,”
RSC Adv.
11
,
2854
2865
(
2021
).
28.
P.
Huang
,
M.
Heon
,
D.
Pech
,
M.
Brunet
,
P.-L.
Taberna
,
Y.
Gogotsi
,
S.
Lofland
,
J. D.
Hettinger
, and
P.
Simon
, “
Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips
,”
J. Power Sources
225
,
240
244
(
2013
).
29.
H.
Zhang
,
C.
Hu
,
J.
Lv
,
S.
Grasso
,
M.
Mishra
,
M.
Estili
,
Y.
Yamauchi
,
B.
Kim
, and
Y.
Sakka
, “
Microstructure and adsorption property of nanocarbide-derived carbon (CDC) synthesized at ambient temperature
,”
Mater. Lett.
130
,
188
191
(
2014
).
30.
L.
Zhang
,
X.
Qin
,
G.
Shao
,
Z.
Ma
,
S.
Liu
, and
C.
He
, “
A new route for preparation of titanium carbide derived carbon and its performance for supercapacitors
,”
Mater. Lett.
122
,
78
81
(
2014
).
31.
L. K. C.
de Souza
,
J. C.
Martins
,
D. P.
Oliveira
,
C. S.
Ferreira
,
A. A. S.
Gonçalves
,
R. O.
Araujo
,
J.
da Silva Chaar
,
M. J. F.
Costa
,
D. V.
Sampaio
,
R. R.
Passos
, and
L. A.
Pocrifka
, “
Hierarchical porous carbon derived from acai seed biowaste for supercapacitor electrode materials
,”
J. Mater. Sci.: Mater. Electron.
31
(
15
),
12148
12157
(
2020
).
32.
S.
Jiang
,
Z.
Zhang
,
Y.
Qu
,
X.
Wang
,
Q.
Li
,
Y.
Lai
, and
J.
Li
, “
Activated carbon aerogels with high bimodal porosity for lithium/sulfur batteries
,”
J. Solid State Electrochem.
18
(
2
),
545
551
(
2014
).
33.
S. M.
Varghese
,
V. V.
Mohan
,
S.
Suresh
,
E.
Bhoje Gowd
, and
R. B.
Rakhi
, “
Synergistically modified Ti3C2Tx MXene conducting polymer nanocomposites as efficient electrode materials for supercapacitors
,”
J. Alloys Compd.
973
,
172923
(
2024
).
34.
V. V.
Mohan
,
P. M.
Anjana
, and
R. B.
Rakhi
, “
One pot synthesis of tungsten oxide nanomaterial and application in the field of flexible symmetric supercapacitor energy storage device
,”
Mater. Today Proc.
62
,
848
851
(
2022
).
35.
V. V.
Mohan
,
M.
Mohan
, and
R. B.
Rakhi
, “
High performance supercapacitors based on WS2 nanoflower electrodes with commercial-level mass-loading
,”
Surf. Interfaces
42
,
103496
(
2023
).
36.
M.
Manuraj
,
V. V.
Mohan
,
S. A.
Aravindh
,
S. R. S.
Kumar
,
K. N. N.
Unni
, and
R. B.
Rakhi
, “
Can mixed cation transition metal dichalcogenide electrodes enhance the performance of electrochemical energy storage devices? The case of MoS2xSe2(1-x)
,”
Chem. Eng. J.
443
,
136451
(
2022
).
37.
X.
Xu
,
D.
Sha
,
Z.
Tian
,
F.
Wu
,
W.
Zheng
,
L.
Yang
,
S.
Xie
,
P.
Zhang
, and
Z.
Sun
, “
Lithium storage performance and mechanism of nano-sized Ti2InC MAX Phase
,”
Nanoscale Horiz.
8
(
3
),
331
337
(
2023
).
38.
Q.
Zhang
,
Z.
Tian
,
P.
Zhang
,
Y.
Zhang
,
Y.
Liu
,
W.
He
,
L.
Pan
,
Y.
Liu
, and
Z.
Sun
, “
Rapid and massive growth of tin whisker on mechanochemically decomposed Ti2SnC
,”
Mater. Today Commun.
31
,
103466
(
2022
).

Supplementary Material

You do not currently have access to this content.