Emergent inductance has attracted significant interest for its relevance in both interesting fundamental physics and practical applications in magnetic devices that demand miniaturization without compromising inductance. In this Letter, we report the discovery of a stepwise magnetic field-induced emergent magneto-inductance (EML) effect in Permalloy (Py) thin films deposited on polycarbonate (PC) substrates. Remarkably, Py/PC devices exhibit an exceptionally large inductance variation exceeding 1 μH at room temperature, and intriguingly, a sign reversal of inductance occurs around the zero magnetic field. The dependencies of the EML effect on frequency, step magnetic field changes, and film width can be explained from the theory based on the spin motive force driven by transient domain wall motion. This study opens up exciting avenues for advancing our understanding of emergent inductance in fundamental physics and paves the way for practical applications in flexible magnetic devices.

1.
N.
Nagaosa
,
Jpn. J. Appl. Phys., Part 1
58
,
120909
(
2019
).
2.
T.
Yokouchi
,
F.
Kagawa
,
M.
Hirschberger
,
Y.
Otani
,
N.
Nagaosa
, and
Y.
Tokura
,
Nature
586
,
232
(
2020
).
3.
J.
Ieda
and
Y.
Yamane
,
Phys. Rev. B
103
,
L100402
(
2021
).
4.
D.
Kurebayashi
and
N.
Nagaosa
,
Commun. Phys.
4
,
260
(
2021
).
5.
A.
Kitaoria
,
N.
Kanazawa
,
T.
Yokouchi
,
F.
Kagawa
,
N.
Nagaosa
, and
Y.
Tokura
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2105422118
(
2021
).
6.
A.
Kitaori
,
J. S.
White
,
N.
Kanazawa
,
V.
Ukleev
,
D.
Singh
,
Y.
Furukawa
,
T.
Arima
,
N.
Nagaosa
, and
Y.
Tokura
,
Phys. Rev. B
107
,
024406
(
2023
).
8.
S. E.
Barnes
and
S.
Maekawa
,
Phys. Rev. Lett.
98
,
246601
(
2007
).
9.
S. A.
Yang
,
G. S. D.
Beach
,
C.
Knutson
,
D.
Xiao
,
Q.
Niu
,
M.
Tsoi
, and
J. L.
Erskine
,
Phys. Rev. Lett.
102
,
06720
(
2009
).
10.
Y.
Yamane
,
J.
Ieda
, and
A.
Maekawa
,
Phys. Rev. B
88
,
014430
(
2013
).
11.
K. M. D.
Hals
and
A.
Brataas
,
Phys. Rev. B
91
,
214401
(
2015
).
12.
R. E.
Gladyshevskii
,
O. R.
Strusievicz
,
K.
Cenzual
, and
E.
Parthé
,
Acta Crystallogr. Sect. B
49
,
474
(
1993
).
13.
J.
Niermann
and
W.
Jeitschko
,
J. Inorg. Gen. Chem.
628
,
2549
(
2002
).
14.
S.
Nakamura
,
N.
Kabeya
,
M.
Kobayashi
,
K.
Araki
,
K.
Katoh
, and
A.
Ochiai
,
Phys. Rev. B
98
,
054410
(
2018
).
15.
V.
Chandragiri
,
K. K.
Iyer
, and
E. V.
Sampathkumaran
,
J. Phys.: Condens. Matter
28
,
286002
(
2016
).
16.
M.
Hirschberger
,
T.
Nakajima
,
S.
Gao
,
L.
Peng
,
A.
Kikkawa
,
T.
Kurumaji
,
M.
Kriener
,
Y.
Yamasaki
,
H.
Sagayama
,
H.
Nakao
,
K.
Ohishi
,
K.
Kakurai
,
Y.
Taguchi
,
X.
Yu
,
T.
Arima
, and
Y.
Tokura
,
Nat. Commun.
10
,
5831
(
2019
).
17.
Y.
Yamane
,
S.
Fukami
, and
J.
Ieda
,
Phys. Rev. Lett.
128
,
147201
(
2022
).
18.
M.
Knobel
and
K. R.
Pirota
,
J. Magn. Magn. Mater.
242–245
,
33
(
2002
).
19.
J.-Y.
Chen
,
Y.-C.
Lau
,
J. M. D.
Coey
,
M.
Li
, and
J.
Wang
,
Sci. Rep.
7
,
42001
(
2017
).
20.
Y.
Satake
,
K.
Fujiwara
,
J.
Shiogai
,
T.
Seki
, and
A.
Tsukazaki
,
Sci. Rep.
9
,
3282
(
2019
).
21.
S.
Ota
,
A.
Ando
,
T.
Sekitani
,
T.
Koyama
, and
D.
Chiba
,
Appl. Phys. Lett.
115
,
202401
(
2019
).
22.
Y.
Ohashi
,
Y.
Matsushima
, and
H.
Kaiju
,
J. Magn. Magn. Mater.
570
,
170497
(
2023
).
23.
X.
Chen
,
B.
Wang
,
X.
Wen
,
P.
Sheng
,
D.
Pravarthana
,
H.
Yang
,
Y.
Xie
,
H.
Liu
,
X.
Xu
, and
R.-W.
Li
,
J. Magn. Magn. Mater.
505
,
166750
(
2020
).
24.
H.
Kaiju
,
A.
Ono
,
N.
Kawaguchi
,
K.
Kondo
,
A.
Ishibashi
,
J.
Won
,
A.
Hirata
,
M.
Ishimaru
, and
Y.
Hirotsu
,
Appl. Surf. Sci.
255
,
3706
(
2009
).
25.
H.
Kaiju
,
N.
Basheer
,
K.
Kondo
, and
A.
Ishibashi
,
IEEE Trans. Magn.
46
,
1356
(
2010
).
27.
G.
Tatara
and
H.
Kohno
,
Phys. Rev. Lett.
92
,
086601
(
2004
).
28.
G.
Tatara
,
T.
Takayama
,
H.
Kohno
,
J.
Shibata
,
Y.
Nakatani
, and
H.
Fukuyama
,
J. Phys. Soc. Jpn.
75
,
064708
(
2006
).

Supplementary Material

You do not currently have access to this content.