Phase change (PC) materials, such as metal oxides, possess high fundamental and applied importance for modern memory, sensor, and photonic devices. However, revealing the kinetics and mechanisms of PC and achieving the reversible and irreversible PC regimes are still a challenge. Here, we report on 200 nm films of metastable Cu4O3 obtained by magnetron sputtering. In situ structural and optical analyses during air annealing revealed the thermal induced PC from Cu4O3 to CuO. Combination of x-ray diffraction and optical transmittance with heating up to 450 °C allowed us to explore the PC rate and then to correlate it with classical nucleation and crystal growth mechanism. We have also revealed two regimes of PC, possessing reversible 12% (1.42–1.25 eV) and irreversible 220% (1.25–2.75 eV) direct bandgap tuning by temperature. The results, thereby, pave the way for controllable transformation of copper oxide thin films to achieve the desired microstructure and its functionality.

1.
F.
Coppari
,
R. F.
Smith
,
J.
Wang
,
M.
Millot
,
D.
Kim
,
J. R.
Rygg
,
S.
Hamel
,
J. H.
Eggert
, and
T. S.
Duffy
,
Nat. Geosci.
14
,
121
126
(
2021
).
2.
M.
Wuttig
,
H.
Bhaskaran
, and
T.
Taubner
,
Nat. Photonics
11
,
465
476
(
2017
).
3.
W.
Zhang
,
R.
Mazzarello
,
M.
Wuttig
, and
E.
Ma
,
Nat. Rev. Mater.
4
,
150
168
(
2019
).
4.
D.
Lencer
,
M.
Salinga
,
B.
Grabowski
,
T.
Hickel
,
J.
Neugebauer
, and
M.
Wuttig
,
Nat. Mater.
7
,
972
977
(
2008
).
5.
J.
Su
,
Z.
Zhang
,
X.
Wan
,
W.
Yu
,
A.
Wang
,
H.
Zhong
,
J.
Robertson
, and
Y.
Guo
,
Appl. Phys. Lett.
122
,
252102
(
2023
).
6.
Y.
Zhang
,
J. B.
Chou
,
J.
Li
,
H.
Li
,
Q.
Du
,
A.
Yadav
,
S.
Zhou
,
M. Y.
Shalaginov
,
Z.
Fang
,
H.
Zhong
,
C.
Roberts
,
P.
Robinson
,
B.
Bohlin
,
C.
Ríos
,
H.
Lin
,
M.
Kang
,
T.
Gu
,
J.
Warner
,
V.
Liberman
,
K.
Richardson
, and
J.
Hu
,
Nat. Commun.
10
,
4279
(
2019
).
7.
M. S.
Arjunan
,
A.
Mondal
,
A.
Das
,
K. V.
Adarsh
, and
A.
Manivannan
,
Opt. Lett.
44
(
12
),
3134
3137
(
2019
).
8.
Z.
Shao
,
X.
Cao
,
H.
Luo
, and
P.
Jin
,
NPG Asia Mater.
10
,
581
605
(
2018
).
9.
K.
Liu
,
S.
Lee
,
S.
Yang
,
O.
Delaire
, and
J.
Wu
,
Mater. Today
21
(
8
),
875
896
(
2018
).
10.
X.
Yu
,
T. J.
Marks
, and
A.
Facchetti
,
Nat. Mater.
15
,
383
396
(
2016
).
11.
M. K.
Sohn
,
H.
Singh
,
E.-M.
Kim
,
G. S.
Heo
,
S. W.
Choi
,
D. G.
Phyun
, and
D. J.
Kang
,
Appl. Phys. Lett.
120
,
173503
(
2022
).
12.
Handbook of Thin Film Deposition
, edited by
K.
Seshan
(
Elsevier Inc
.,
2012
).
13.
J. F.
Pierson
,
A.
Thobor-Keck
, and
A.
Billard
,
Appl. Surf. Sci.
210
,
359
367
(
2003
).
14.
M.
Heinemann
,
B.
Eifert
, and
C.
Heiliger
,
Phys. Rev. B
87
(
11
),
115111
(
2013
).
15.
D. S.
Murali
and
S.
Aryasomayajula
,
Appl. Phys. A
124
,
279
(
2018
).
16.
D. S.
Murali
and
A.
Subrahmanyam
,
J. Phys. D: Appl. Phys.
49
(
37
),
375102
(
2016
).
17.
L.
Debbichi
,
M. C.
Marco de Lucas
,
J. F.
Pierson
, and
P.
Krüger
,
J. Phys. Chem. C
116
,
10232
10237
(
2012
).
18.
L.
Radjehi
,
L.
Aissani
,
A.
Djelloul
,
S.
Lamri
,
K.
Nomenyo
,
S.
Achache
,
G.
Lerondel
, and
F.
Sanchette
,
Surf. Eng.
37
(
4
),
422
428
(
2021
).
19.
Y.
Wang
,
S.
Lany
,
J.
Ghanbaja
,
Y.
Fagot-Revurat
,
Y. P.
Chen
,
F.
Soldera
,
D.
Horwat
,
F.
Mucklich
, and
J. F.
Pierson
,
Phys. Rev. B
94
,
245418
(
2016
).
20.
Y.
Wang
,
P.
Miska
,
D.
Pilloud
,
D.
Horwat
,
F.
Mucklich
, and
J. F.
Pierson
,
J. Appl. Phys.
115
,
073505
(
2014
).
21.
Y. A.
Mezenov
,
S.
Bruyere
,
N. K.
Kulachenkov
,
A. N.
Yankin
,
S. S.
Rzhevskiy
,
P. V.
Alekseevskiy
,
V. D.
Gilemkhanova
,
S. V.
Bachinin
,
V.
Dyachuk
,
A. A.
Krasilin
,
J.
Zollinger
,
T.
Belmonte
,
A.
Nominé
, and
V. A.
Milichko
,
Photonics Nanostruct. Fund. Appl.
41
,
100832
(
2020
).
You do not currently have access to this content.