We investigate the bulk passivation of the dilute bismide alloy InAsSbBi by plasma-assisted hydrogenation. InAsSbBi is of significant interest for mid- to long-wave infrared photodetection due to its bandgap flexibility and potential integration with heterostructured photodetector architectures. Epitaxially grown InAsSbBi samples are characterized by photoluminescence and time-resolved photoluminescence measurements for a range of hydrogenation conditions. Increases in the minority carrier lifetime of over 3 × are reported, with no degradation over a period of months following the treatment. Photoluminescence measurements confirm that the hydrogenation process improves the InAsSbBi optical properties. These results offer a path toward the improved performance of InAsSbBi-based photodetectors and potentially other narrow bandgap semiconductor materials and material systems.

1.
A.
Rogalski
, “
HgCdTe infrared detector material: History, status and outlook
,”
Rep. Prog. Phys.
68
,
2267
2336
(
2005
).
2.
A.
Rogalski
, “
HgCdTe photodetectors
,” in
Mid-Infrared Optoelectronics, Woodhead Publishing Series in Electronic and Optical Materials
, edited by
E.
Tournié
and
L.
Cerutti
(
Woodhead Publishing
,
2020
), Chap.7, pp.
235
335
.
3.
European Union, Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment
(European Union,
2011
), Vol. L174.
4.
D. L.
Smith
and
C.
Mailhiot
, “
Proposal for strained type II superlattice infrared detectors
,”
J. Appl. Phys.
62
,
2545
2548
(
1987
).
5.
C. H.
Grein
,
M. E.
Flatté
,
J. T.
Olesberg
,
S. A.
Anson
,
L.
Zhang
, and
T. F.
Boggess
, “
Auger recombination in narrow-gap semiconductor superlattices incorporating antimony
,”
J. Appl. Phys.
92
,
7311
7316
(
2002
).
6.
B. V.
Olson
,
C. H.
Grein
,
J. K.
Kim
,
E. A.
Kadlec
,
J. F.
Klem
,
S. D.
Hawkins
, and
E. A.
Shaner
, “
Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices
,”
Appl. Phys. Lett.
107
,
261104
(
2015
).
7.
J. B.
Rodriguez
,
E.
Plis
,
G.
Bishop
,
Y. D.
Sharma
,
H.
Kim
,
L. R.
Dawson
, and
S.
Krishna
, “
nbn structure based on InAs/GaSb type-II strained layer superlattices
,”
Appl. Phys. Lett.
91
,
043514
(
2007
).
8.
D. Z.-Y.
Ting
,
C. J.
Hill
,
A.
Soibel
,
S. A.
Keo
,
J. M.
Mumolo
,
J.
Nguyen
, and
S. D.
Gunapala
, “
A high-performance long wavelength superlattice complementary barrier infrared detector
,”
Appl. Phys. Lett.
95
,
023508
(
2009
).
9.
N.
Yoon
,
C. J.
Reyner
,
G.
Ariyawansa
,
J. M.
Duran
,
J. E.
Scheihing
,
J.
Mabon
, and
D.
Wasserman
, “
Modified electron beam induced current technique for in(Ga)As/InAsSb superlattice infrared detectors
,”
J. Appl. Phys.
122
,
074503
(
2017
).
10.
Z.
Taghipour
,
S.
Lee
,
S.
Myers
,
E.
Steenbergen
,
C.
Morath
,
V.
Cowan
,
S.
Mathews
,
G.
Balakrishnan
, and
S.
Krishna
, “
Temperature-dependent minority-carrier mobility in p-type InAs/GaSb type-II-superlattice photodetectors
,”
Phys. Rev. Appl.
11
,
024047
(
2019
).
11.
L. K.
Casias
,
C. P.
Morath
,
E. H.
Steenbergen
,
G. A.
Umana-Membreno
,
P. T.
Webster
,
J. V.
Logan
,
J. K.
Kim
,
G.
Balakrishnan
,
L.
Faraone
, and
S.
Krishna
, “
Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material
,”
Appl. Phys. Lett.
116
,
182109
(
2020
).
12.
I.
Vurgaftman
,
G.
Belenky
,
Y.
Lin
,
D.
Donetsky
,
L.
Shterengas
,
G.
Kipshidze
,
W.
Sarney
, and
S.
Svensson
, “
Interband absorption strength in long-wave infrared type-ii superlattices with small and large superlattice periods compared to bulk materials
,”
Appl. Phys. Lett.
108
,
222101
(
2016
).
13.
V.
Letka
,
A.
Bainbridge
,
A. P.
Craig
,
F.
Al-Saymari
, and
A. R. J.
Marshall
, “
Resonant cavity-enhanced photodetector incorporating a type-II superlattice to extend MWIR sensitivity
,”
Opt. Express
27
,
23970
23980
(
2019
).
14.
C. L.
Canedy
,
W. W.
Bewley
,
C. D.
Merritt
,
C. S.
Kim
,
M.
Kim
,
M. V.
Warren
,
E. M.
Jackson
,
J. A.
Nolde
,
C. A.
Affouda
,
E. H.
Aifer
,
I.
Vurgaftman
, and
J. R.
Meyer
, “
Resonant-cavity infrared detector with five-quantum-well absorber and 34% external quantum efficiency at 4 μm
,”
Opt. Express
27
,
3771
3781
(
2019
).
15.
A.
Kamboj
,
L.
Nordin
,
P.
Petluru
,
A. J.
Muhowski
,
D. N.
Woolf
, and
D.
Wasserman
, “
All-epitaxial guided-mode resonance mid-wave infrared detectors
,”
Appl. Phys. Lett.
118
,
201102
(
2021
).
16.
J. A.
Nolde
,
M.
Kim
,
C. S.
Kim
,
E. M.
Jackson
,
C. T.
Ellis
,
J.
Abell
,
O. J.
Glembocki
,
C. L.
Canedy
,
J. G.
Tischler
,
I.
Vurgaftman
,
J. R.
Meyer
, and
E. H.
Aifer
, “
Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings
,”
Appl. Phys. Lett.
106
,
261109
(
2015
).
17.
L.
Nordin
,
P.
Petluru
,
A.
Kamboj
,
A. J.
Muhowski
, and
D.
Wasserman
, “
Ultra-thin plasmonic detectors
,”
Optica
8
,
1545
1551
(
2021
).
18.
T.
Ashley
,
A.
Dean
,
C.
Elliott
,
C.
McConville
, and
C.
Whitehouse
, “
Molecular-beam growth of homoepitaxial InSb photovoltaic detectors
,”
Electron. Lett.
24
,
1270
1272
(
1988
).
19.
S.
Bedair
,
T.
Humphreys
,
P.
Chaing
, and
T.
Katsuyama
, “
InAsSbBi and InSbBi: Potential material systems for infrared detection
,”
MRS Online Proc. Library
90
,
447
(
1986
).
20.
P. T.
Webster
,
J. V.
Logan
,
L.
Helms
,
P. C.
Grant
,
C.
Hains
,
R. A.
Carrasco
,
A. T.
Newell
,
M. S.
Milosavljevic
,
S. R.
Johnson
,
G.
Balakrishnan
,
D.
Maestas
, and
C. P.
Morath
, “
Demonstration of a 4.32 μm cutoff InAsSbBi nBn photodetector, a lattice-matched random alloy III-V solution for mid-wave infrared sensing
,”
Appl. Phys. Lett.
123
,
052101
(
2023
).
21.
P.
Webster
,
N.
Riordan
,
S.
Liu
,
E.
Steenbergen
,
R.
Synowicki
,
Y.-H.
Zhang
, and
S.
Johnson
, “
Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy
,”
J. Appl. Phys.
118
,
245706
(
2015
).
22.
P.
Webster
,
A.
Shalindar
,
N.
Riordan
,
C.
Gogineni
,
H.
Liang
,
A.
Sharma
, and
S. R.
Johnson
, “
Optical properties of InAsBi and optimal designs of lattice-matched and strain-balanced III-V semiconductor superlattices
,”
J. Appl. Phys.
119
,
225701
(
2016
).
23.
S. T.
Schaefer
,
R. R.
Kosireddy
,
P. T.
Webster
, and
S. R.
Johnson
, “
Molecular beam epitaxy growth and optical properties of InAsSbBi
,”
J. Appl. Phys.
126
,
083101
(
2019
).
24.
P. T.
Webster
,
A. J.
Shalindar
,
S. T.
Schaefer
, and
S. R.
Johnson
, “
Bandgap and composition of bulk InAsSbBi grown by molecular beam epitaxy
,”
Appl. Phys. Lett.
111
,
082104
(
2017
).
25.
H.
Ye
,
L.
Li
,
R. T.
Hinkey
,
R. Q.
Yang
,
T. D.
Mishima
,
J. C.
Keay
,
M. B.
Santos
, and
M. B.
Johnson
, “
MBE growth optimization of InAs (001) homoepitaxy
,”
J. Vac. Sci. Technol. B
31
,
03C135
(
2013
).
26.
P.
Petluru
,
P. C.
Grant
,
A. J.
Muhowski
,
I. M.
Obermeier
,
M. S.
Milosavljevic
,
S. R.
Johnson
,
D.
Wasserman
,
E. H.
Steenbergen
, and
P. T.
Webster
, “
Minority carrier lifetime and photoluminescence of mid-wave infrared InAsSbBi
,”
Appl. Phys. Lett.
117
,
061103
(
2020
).
27.
E. H.
Steenbergen
,
B. C.
Connelly
,
G. D.
Metcalfe
,
H.
Shen
,
M.
Wraback
,
D.
Lubyshev
,
Y.
Qiu
,
J. M.
Fastenau
,
A. W. K.
Liu
,
S.
Elhamri
,
O. O.
Cellek
, and
Y.-H.
Zhang
, “
Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb
,”
Appl. Phys. Lett.
99
,
251110
(
2011
).
28.
D. O.
Alshahrani
,
M.
Kesaria
,
E. A.
Anyebe
,
V.
Srivastava
, and
D. L.
Huffaker
, “
Emerging type-II superlattices of InAs/InAsSb and InAs/GaSb for mid-wavelength infrared photodetectors
,”
Adv. Photonics Res.
3
,
2100094
(
2022
).
29.
B. V.
Olson
,
E. A.
Shaner
,
J. K.
Kim
,
J. F.
Klem
,
S. D.
Hawkins
,
L. M.
Murray
,
J. P.
Prineas
,
M. E.
Flatté
, and
T. F.
Boggess
, “
Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice
,”
Appl. Phys. Lett.
101
,
092109
(
2012
).
30.
B.
Klein
,
N.
Gautam
,
E.
Plis
,
T.
Schuler-Sandy
,
T. J.
Rotter
,
S.
Krishna
,
B. C.
Connelly
,
G. D.
Metcalfe
,
P.
Shen
, and
M.
Wraback
, “
Carrier lifetime studies in midwave infrared type-II InAs/GaSb strained layer superlattice
,”
J. Vac. Sci. Technol. B
32
,
02C101
(
2014
).
31.
S. J.
Pearton
,
W. C.
Dautremont-Smith
,
J.
Chevallier
,
C. W.
Tu
, and
K. D.
Cummings
, “
Hydrogenation of shallow-donor levels in GaAs
,”
J. Appl. Phys.
59
,
2821
2827
(
1986
).
32.
B.
Theys
,
A.
Lusson
,
J.
Chevallier
,
C.
Grattepain
,
S.
Kalem
, and
M.
Stutzmann
, “
Hydrogenation of InAs on GaAs heterostructures
,”
J. Appl. Phys.
70
,
1461
1466
(
1991
).
33.
K.
Hossain
,
L.
Höglund
,
L. C.
Phinney
,
T. D.
Golding
,
G.
Wicks
,
A.
Khoshakhlagh
,
D. Z.-Y.
Ting
,
A.
Soibel
, and
S. D.
Gunapala
, “
Hydrogenation defect passivation for improved minority carrier lifetime in midwavelength Ga-free InAs/InAsSb superlattices
,”
J. Electron. Mater.
45
,
5626
5629
(
2016
).
34.
P.
Boieriu
,
S.
Velicu
,
R.
Bommena
,
C.
Buurma
,
C.
Blisset
,
C.
Grein
,
S.
Sivananthan
, and
P.
Hagler
, “
High operation temperature of HgCdTe photodiodes by bulk defect passivation
,”
Proc. SPIE
8631
,
86311J
(
2013
).
35.
G.
Luo
,
S.
Yang
,
G. R.
Jenness
,
Z.
Song
,
T. F.
Kuech
, and
D.
Morgan
, “
Understanding and reducing deleterious defects in the metastable alloy GaAsBi
,”
NPG Asia Mater.
9
,
e345
(
2017
).
36.
Y.
Aytac
,
B. V.
Olson
,
J. K.
Kim
,
E. A.
Shaner
,
S. D.
Hawkins
,
J. F.
Klem
,
M. E.
Flatte
, and
T. F.
Boggess
, “
Temperature-dependent optical measurements of the dominant recombination mechanisms in InAs/InAsSb type-2 superlattices
,”
J. Appl. Phys.
118
,
125701
(
2015
).
37.
B. V.
Olson
,
E. A.
Shaner
,
J. K.
Kim
,
J. F.
Klem
,
S. D.
Hawkins
,
M. E.
Flatté
, and
T. F.
Boggess
, “
Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys
,”
Appl. Phys. Lett.
103
,
052106
(
2013
).
38.
E.
Plis
,
M.
Kutty
,
S.
Myers
,
H.
Kim
,
N.
Gautam
,
L.
Dawson
, and
S.
Krishna
, “
Passivation of long-wave infrared InAs/GaSb strained layer superlattice detectors
,”
Infrared Phys. Technol.
54
,
252
257
(
2011
).
You do not currently have access to this content.