FeSb2 is known as a potential low-temperature thermoelectric material with the record-high power factor (PF) originating from the huge phonon drag thermopower (Sg). However, the Sg contribution to PF has been observed only at very low temperatures (T) < 40 K. In this paper, we found that the Sg persists at much higher T up to 240 K and enhances PF in FeSb2 thin films deposited on SrTiO3 single crystals. The FeSb2 films showed phonon drag Sg peak at T ∼ 60 K, and the Sg peak value was largely enhanced from 56 to 208 μV/K by varying film thicknesses from 10 to 100 nm. Due to thickness-dependent Sg contribution, the maximum PF = 31.3 μW/(cm K2) was obtained for a 37-nm thick film. In addition, the onset temperature, where Sg starts to appear, can be largely increased due presumably to the enhanced electron–phonon interaction by phonon leakage from the SrTiO3 substrate to the thin FeSb2 layer. Heterostructuring with an oxide would be an effective approach to enhance the phonon drag effect to increase PF in higher T regions for future thermoelectric cooling and energy conversion devices.

1.
F. J.
Disalvo
, “
Thermoelectric cooling and power generation
,”
Science
285
,
703
706
(
1999
).
2.
L. E.
Bell
, “
Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
,”
Science
321
,
1457
1461
(
2008
).
3.
Q. H.
Zhang
,
X. Y.
Huang
,
S. Q.
Bai
,
X.
Shi
,
C.
Uher
, and
L. D.
Chen
, “
Thermoelectric devices for power generation: recent progress and future challenges
,”
Adv. Eng. Mater.
18
,
194
213
(
2016
).
4.
J.
Mao
,
G.
Chen
, and
Z.
Ren
, “
Thermoelectric cooling materials
,”
Nat. Mater.
20
,
454
461
(
2021
).
5.
N.
Jia
,
J.
Cao
,
X. Y.
Tan
,
J.
Dong
,
H.
Liu
,
C. K. I.
Tan
,
J.
Xu
,
Q.
Yan
,
X. J.
Loh
, and
A.
Suwardi
, “
Thermoelectric materials and transport physics
,”
Mater. Today Phys.
21
,
100519
(
2021
).
6.
J.
He
and
T. M.
Tritt
, “
Advances in thermoelectric materials research: Looking back and moving forward
,”
Science
357
,
eaak9997
(
2017
).
7.
C.
Han
,
Q.
Sun
,
Z.
Li
, and
S. X.
Dou
, “
Thermoelectric enhancement of different kinds of metal chalcogenides
,”
Adv. Energy Mater.
6
,
1600498
(
2016
).
8.
T.
Zhu
,
Y.
Liu
,
C.
Fu
,
J. P.
Heremans
,
J. G.
Snyder
, and
X.
Zhao
, “
Compromise and synergy in high-efficiency thermoelectric materials
,”
Adv. Mater.
29
,
1605884
(
2017
).
9.
G. E.
Smith
and
R.
Wolfe
, “
Thermoelectric properties of bismuth-antimony alloys
,”
J. Appl. Phys.
33
,
841
846
(
1962
).
10.
M.
Stordeur
, “
The thermoelectric figure of merit in the mixed crystal system p-(Bi1−xSbx)2Te3
,”
Phys. Status Solidi B
161
,
831
835
(
1990
).
11.
D.-Y.
Chung
,
T.
Hogan
,
P.
Brazis
,
M.
Rocci-Lane
,
C.
Kannewurf
,
M.
Bastea
,
C.
Uher
, and
M. G.
Kanatzidis
, “
CsBi4Te6: A high-performance thermoelectric material for low-temperature applications
,”
Science
287
,
1024
1027
(
2000
).
12.
G. J.
Snyder
and
E. S.
Toberer
, “
Complex thermoelectric materials
,”
Nat. Mater.
7
,
105
114
(
2008
).
13.
A.
Bentien
,
S.
Johnsen
,
G. K. H.
Madsen
,
B. B.
Iversen
, and
F.
Steglich
, “
Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2
,”
Europhys. Lett.
80
,
17008
(
2007
).
14.
R.
Hu
,
V. F.
Mitrović
, and
C.
Petrovic
, “
Giant carrier mobility in single crystals of FeSb2
,”
Appl. Phys. Lett.
92
,
182108
(
2008
).
15.
C.
Herring
, “
Theory of the thermoelectric power of semiconductors
,”
Phys. Rev.
96
,
1163
1187
(
1954
).
16.
H.
Takahashi
,
R.
Okazaki
,
I.
Terasaki
, and
Y.
Yasui
, “
Origin of the energy gap in the narrow-gap semiconductor FeSb2 revealed by high-pressure magnetotransport measurements
,”
Phys. Rev. B
88
,
165205
(
2013
).
17.
M.
Battiato
,
J. M.
Tomczak
,
Z.
Zhong
, and
K.
Held
, “
Unified picture for the colossal thermopower compound FeSb2
,”
Phys. Rev. Lett.
114
,
236603
(
2015
).
18.
H.
Takahashi
,
R.
Okazaki
,
S.
Ishiwata
,
H.
Taniguchi
,
A.
Okutani
,
M.
Hagiwara
, and
I.
Terasaki
, “
Colossal Seebeck effect enhanced by quasi-ballistic phonons dragging massive electrons in FeSb2
,”
Nat. Commun.
7
,
12732
(
2016
).
19.
J. J.
Lee
,
F. T.
Schmitt
,
R. G.
Moore
,
S.
Johnston
,
Y.-T.
Cui
,
W.
Li
,
M.
Yi
,
Z. K.
Liu
,
M.
Hashimoto
,
Y.
Zhang
,
D. H.
Lu
,
T. P.
Devereaux
,
D.-H.
Lee
, and
Z.-X.
Shen
, “
Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3
,”
Nature
515
,
245
248
(
2014
).
20.
G.
Wang
,
L.
Endicott
,
H.
Chi
,
P.
Lošt'ák
, and
C.
Uher
, “
Tuning the temperature domain of phonon drag in thin films by the choice of substrate
,”
Phys. Rev. Lett.
111
,
046803
(
2013
).
21.
M.
Kimura
,
X.
He
,
T.
Katase
,
T.
Tadano
,
J. M.
Tomczak
,
M.
Minohara
,
R.
Aso
,
H.
Yoshida
,
K.
Ide
,
S.
Ueda
,
H.
Hiramatsu
,
H.
Kumigashira
,
H.
Hosono
, and
T.
Kamiya
, “
Large phonon drag thermopower boosted by massive electrons and phonon leaking in LaAlO3/LaNiO3/LaAlO3 heterostructure
,”
Nano Lett.
21
,
9240
(
2021
).
22.
A. S.
Yalamarthy
,
M. M.
Rojo
,
A.
Bruefach
,
D.
Boone
,
K. M.
Dowling
,
P. F.
Satterthwaite
,
D.
Goldhaber-Gordon
,
E.
Pop
, and
D. G.
Senesky
, “
Significant phonon drag enables high power factor in the AlGaN/GaN two-dimensional electron gas
,”
Nano Lett.
19
,
3770
3776
(
2019
).
23.
Y.
Sun
,
S.
Johnsen
,
P.
Eklund
,
M.
Sillassen
,
J.
Bøttinger
,
N.
Oeschler
,
P.
Sun
,
F.
Steglich
, and
B. B.
Iversen
, “
Thermoelectric transport properties of highly oriented FeSb2 thin films
,”
J. Appl. Phys.
106
,
033710
(
2009
).
24.
Y.
Sun
,
E.
Zhang
,
S.
Johnse
,
M.
Sillassen
,
P.
Sun
,
F.
Steglich
,
J.
Bøttinger
, and
B. B.
Iversen
, “
Orientation control and thermoelectric properties of FeSb2 films
,”
J. Phys. D
43
,
205402
(
2010
).
25.
Y.
Sun
,
E.
Zhang
,
S.
Johnsen
,
M.
Sillassen
,
P.
Sun
,
F.
Steglich
,
J.
Bøttinger
, and
B. B.
Iversen
, “
Growth of FeSb2 thin films by magnetron sputtering
,”
Thin Solid Films
519
,
5397
(
2011
).
26.
A. T.
Duong
,
S. H.
Rhim
,
Y.
Shin
,
V. Q.
Nguyen
, and
S.
Cho
, “
Magneto-transport and thermoelectric properties of epitaxial FeSb2 thin film on MgO substrate
,”
Appl. Phys. Lett.
106
,
032106
(
2015
).
27.
J.
Li
,
Z.
Yang
,
D. S.
Nkemeni
,
Y.
Zhang
,
S.
Lou
, and
S.
Zhou
, “
High thermoelectric figure of merit of FeSb2−x thin films via defect engineering for low-temperature cooling applications
,”
J. Electron. Mater.
50
,
6724
(
2021
).
28.
H.
Holseth
and
A.
Kjekshus
, “
Compounds with the marcasite type crystal structure. IV. The crystal structure of FeSb2
,”
Acta Chem. Scand.
23
,
3043
3050
(
1969
).
29.
Q.
Du
,
L.
Wu
,
H.
Cao
,
C.-J.
Kang
,
C.
Nelson
,
G. L.
Pascut
,
T.
Besara
,
T.
Siegrist
,
K.
Haule
,
G.
Kotliar
,
I.
Zaliznyak
,
Y.
Zhu
, and
C.
Petrovic
, “
Vacancy defect control of colossal thermopower in FeSb2
,”
npj Quantum Mater.
6
,
13
(
2021
).
30.
P.
Sun
,
N.
Oeschler
,
S.
Johnsen
,
B. B.
Iversen
, and
F.
Steglich
,
Dalton Trans.
39
,
1012
(
2010
).
31.
F. J.
Morin
and
J. P.
Maita
, “
Electrical properties of silicon containing arsenic and boron
,”
Phys. Rev.
96
,
28
35
(
1954
).
32.
L.
Weber
and
E.
Gmelin
, “
Transport properties of silicon
,”
Appl. Phys. A
53
,
136
140
(
1991
).
33.
M.
Pokharel
,
H.
Zhao
,
K.
Lukas
,
Z.
Ren
,
C.
Opeil
, and
B.
Mihaila
, “
Phonon drag effect in nanocomposite FeSb2
,”
MRS Commun.
3
,
31
36
(
2013
).
34.
K.
Momma
and
F.
Izumi
, “
VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
You do not currently have access to this content.