The ordinary Nernst effect enables large transverse thermoelectric conversion in semimetals, but its operation requires the application of an external magnetic field. In this study, we propose a transverse thermoelectric conversion module structure with embedded permanent magnets and demonstrate thermoelectric power generation by the ordinary Nernst effect in the absence of an external magnetic field. In our prototype module comprising alternately stacked Bi88Sb12 slabs and Nd2Fe14B-type permanent magnets, the stray magnetic field generated by the remanent magnetization of the Nd2Fe14B-type magnets is always applied to the Bi88Sb12 slabs, and a power of 13.2 μW is generated due to the ordinary Nernst effect at a temperature difference of 120 K and average temperature of 260 K at zero external field. This thermoelectric module concept will contribute to the further development of transverse thermoelectric conversion technologies utilizing permanent magnets.

1.
K.
Uchida
and
J. P.
Heremans
,
Joule
6
,
2240
2245
(
2022
).
2.
M.
Chen
,
J.
Wang
,
K.
Liu
,
W.
Fan
,
Y.
Sun
,
C.
Felser
,
T.
Zhu
, and
C.
Fu
,
Adv. Energy Mater.
2400411
(
2024
).
3.
T. C.
Harman
,
J. M.
Honig
,
S.
Fischler
, and
A. E.
Paladino
,
Solid-State Electron.
7
,
505
508
(
1964
).
4.
S. N.
Shabde
, “
The Hall and Nernst effect in Bi and Bi-Sb alloys
,” Ph.D. thesis (
Rice University
,
1967
).
5.
M.
Murata
,
K.
Nagase
,
K.
Aoyama
, and
A.
Yamamoto
,
Appl. Phys. Lett.
117
,
103903
(
2020
).
6.
K.
Uchida
,
M.
Murata
,
A.
Miura
, and
R.
Iguchi
,
Phys. Rev. Lett.
125
,
106601
(
2020
).
7.
M.
Murata
,
K.
Nagase
,
K.
Aoyama
,
N.
Abe
, and
A.
Yamamoto
,
J. Appl. Phys.
134
,
215103
(
2023
).
8.
T.
Liang
,
J.
Lin
,
Q.
Gibson
,
T.
Gao
,
M.
Hirschberger
,
M.
Liu
,
R. J.
Cava
, and
N. P.
Ong
,
Phys. Rev. Lett.
118
,
136601
(
2017
).
9.
G.
Sharma
,
C.
Moore
,
S.
Saha
, and
S.
Tewari
,
Phys. Rev. B
96
,
195119
(
2017
).
10.
J.
Xiang
,
S.
Hu
,
M.
Lyu
,
W.
Zhu
,
C.
Ma
,
Z.
Chen
,
F.
Steglich
,
G.
Chen
, and
P.
Sun
,
Sci. China Phys. Mech. Astron.
63
,
237011
(
2020
).
11.
T.
Feng
,
P.
Wang
,
Z.
Han
,
L.
Zhou
,
Z.
Wang
,
W.
Zhang
,
Q.
Liu
, and
W.
Liu
,
Energy Environ. Sci.
16
,
1560
1568
(
2023
).
12.
Y.
Goto
,
H.
Usui
,
M.
Murata
,
J. E.
Goldberger
,
J. P.
Heremans
, and
C.-H.
Lee
,
Chem. Mater.
36
,
2018
2026
(
2024
).
13.
M.
Murata
,
K.
Nagase
,
K.
Aoyama
,
A.
Yamamoto
, and
Y.
Sakuraba
,
iScience
24
,
101967
(
2021
).
15.
M.
Ikhlas
,
T.
Tomita
,
T.
Koretsune
,
M. T.
Suzuki
,
D.
Nishio-Hamane
,
R.
Arita
,
Y.
Otani
, and
S.
Nakatsuji
,
Nat. Phys.
13
,
1085
1090
(
2017
).
16.
A.
Miura
,
H.
Sepehri-Amin
,
K.
Masuda
,
H.
Tsuchiura
,
Y.
Miura
,
R.
Iguchi
,
Y.
Sakuraba
,
J.
Shiomi
,
K.
Hono
, and
K.
Uchida
,
Appl. Phys. Lett.
115
,
222403
(
2019
).
17.
A.
Miura
,
K.
Masuda
,
T.
Hirai
,
R.
Iguchi
,
T.
Seki
,
Y.
Miura
,
H.
Tsuchiura
,
K.
Takanashi
, and
K.
Uchida
,
Appl. Phys. Lett.
117
,
082408
(
2020
).
18.
W.
Zhou
and
Y.
Sakuraba
,
Appl. Phys. Express.
13
,
043001
(
2020
).
19.
R.
Modak
,
Y.
Sakuraba
,
T.
Hirai
,
T.
Yagi
,
H.
Sepehri-Amin
,
W.
Zhou
,
H.
Masuda
,
T.
Seki
,
K.
Takanashi
,
T.
Ohkubo
, and
K.
Uchida
,
Sci. Technol. Adv. Mater.
23
,
767
782
(
2022
).
20.
F.
Ando
,
T.
Hirai
, and
K.
Uchida
,
APL Energy
2
,
016103
(
2024
).
21.
K.
Uchida
,
W.
Zhou
, and
Y.
Sakuraba
,
Appl. Phys. Lett.
118
,
140504
(
2021
).
22.
K.
Uchida
,
T.
Hirai
,
F.
Ando
, and
H.
Sepehri-Amin
,
Adv. Ener. Mater.
14
,
2302375
(
2024
).
23.
B.
Lenoir
,
H.
Scherrer
, and
T.
Caillat
,
Semicond. Semimetals
69
,
101
137
(
2001
).
24.
K.
Vandaele
,
M.
Otsuka
,
Y.
Hasegawa
, and
J. P.
Heremans
,
J. Phys.: Condens. Matter
30
,
403001
(
2018
).
25.
S.
Gao
,
J.
Gaskins
,
X.
Hu
,
K.
Tomko
,
P.
Hopkins
, and
S. J.
Poon
,
Sci. Rep.
9
,
14892
(
2019
).
26.
M.
Murata
,
A.
Yamamoto
,
Y.
Hasegawa
, and
T.
Komine
,
J. Electron. Mater.
45
,
1875
1885
(
2016
).
27.
M.
Murata
,
M.
Suzuki
,
K.
Aoyama
,
K.
Nagase
,
H.
Ohshima
,
A.
Yamamoto
,
Y.
Hasegawa
, and
T.
Komine
,
J. Thermoelectr. Soc. Jpn.
20
,
67
74
(
2023
). (in Japanese)
28.
B. S.
Farag
and
S.
Tanuma
, Technical Report of ISSP, Ser. B No. 18,
1976
.
29.
F.
Zhang
,
Y.
Zang
,
D.
Huang
,
C.
Di
, and
D.
Zhu
,
Nat. Commun.
6
,
8356
(
2015
).

Supplementary Material

You do not currently have access to this content.