Despite recent experiments exhibiting an impressive enhancement in radiative heat flux between parallel planar silica surfaces with gap sizes of about 10 nm, the exploration of sub-nanometric gap distances remains unexplored. In this work, by employing non-equilibrium molecular dynamics (NEMD) simulations, we study the heat transfer between two SiO2 plates in both their amorphous and crystalline forms. When the gap size is 2 nm, we find that the heat transfer coefficient experiences a substantial ∼30-fold increase compared to the experimental value at the gap size of 10 nm confirming the dependence on the distance inversely quadratic as predicted by the fluctuational electrodynamics (FE) theory. Comparative analysis between NEMD and FE reveals a generally good agreement, particularly for amorphous silica. Spectral heat transfer analysis demonstrates the profound influence of gap size on heat transfer, with peaks corresponding to the resonances of dielectric function. Deviations from the fluctuational electrodynamics theory at smaller gap sizes are interpreted in the context of acoustic phonon tunneling and the effects of a gradient of permittivity close to the surfaces.

1.
J. B.
Pendry
, “
Radiative exchange of heat between nanostructures
,”
J. Phys.: Condens. Matter
11
,
6621
(
1999
).
2.
A. I.
Volokitin
and
B. N. J.
Persson
, “
Radiative heat transfer between nanostructures
,”
Phys. Rev. B
63
,
205404
(
2001
).
3.
K.
Joulain
,
J.-P.
Mulet
,
F.
Marquier
,
R.
Carminati
, and
J.-J.
Greffet
, “
Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field
,”
Surf. Sci. Rep.
57
,
59
(
2005
).
4.
J. P.
Mulet
,
K.
Joulain
,
R.
Carminati
, and
J. J.
Greffet
, “
Enhanced radiative heat transfer at nanometric distances
,”
Microscale Thermophys. Eng.
6
,
209
(
2002
).
5.
J. C.
Cuevas
and
F. J.
García-Vidal
, “
Radiative heat transfer
,”
ACS Photonics
5
,
3896
(
2018
).
6.
M.
Pascale
,
M.
Giteau
, and
G. T.
Papadakis
, “
Perspective on near-field radiative heat transfer
,”
Appl. Phys. Lett.
122
,
100501
(
2023
).
7.
Z. M.
Zhang
,
Nano/Microscale Heat Transfer
(
Springer International Publishing
,
Cham
,
2020
).
8.
Y.
De Wilde
,
F.
Formanek
,
R.
Carminati
,
B.
Gralak
,
P. A.
Lemoine
,
K.
Joulain
,
J. P.
Mulet
,
Y.
Chen
, and
J. J.
Greffet
, “
Thermal radiation scanning tunnelling microscopy
,”
Nature
444
,
740
(
2006
).
9.
I.
Altfeder
,
A. A.
Voevodin
, and
A. K.
Roy
, “
Vacuum phonon tunneling
,”
Phys. Rev. Lett.
105
,
166101
(
2010
).
10.
A. C.
Jones
and
M. B.
Raschke
, “
Thermal infrared near-field spectroscopy
,”
Nano Lett.
12
,
1475
(
2012
).
11.
M. H.
Kryder
,
E. C.
Gage
,
T. W.
Mcdaniel
,
W. A.
Challener
,
R. E.
Rottmayer
,
G.
Ju
,
Y. T.
Hsia
, and
M. F.
Erden
, “
Heat assisted magnetic recording
,”
Proc. IEEE
96
,
1810
(
2008
).
12.
W. A.
Challener
,
C.
Peng
,
A. V.
Itagi
et al, “
Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer
,”
Nat. Photonics
3
,
220
(
2009
).
13.
B. C.
Stipe
,
T. C.
Strand
,
C. C.
Poon
et al, “
Magnetic recording at 1.5Pb m−2 using an integrated plasmonic antenna
,”
Nat. Photonics
4
,
484
(
2010
).
14.
W.
Srituravanich
,
N.
Fang
,
C.
Sun
,
Q.
Luo
, and
X.
Zhang
, “
Plasmonic nanolithography
,”
Nano Lett.
4
,
1085
(
2004
).
15.
A. I.
Volokitin
, “
Enhancement of non-contact friction between metal surfaces induced by the electrical double layer
,”
Appl. Surf. Sci. Adv.
6
,
100160
(
2021
).
16.
I.
Latella
,
S.-A.
Biehs
, and
P.
Ben-Abdallah
, “
Smart thermal management with near-field thermal radiation
,”
Opt. Express
29
,
24816
(
2021
).
17.
I.
Latella
,
P.
Ben-Abdallah
, and
M.
Nikbakht
, “
Radiative thermal rectification in many-body systems
,”
Phys. Rev. B
104
,
045410
(
2021
).
18.
C. G. A.
Barura
,
P.
Ben-Abdallah
, and
R.
Messina
, “
Coupling between conduction and near-field radiative heat transfer in tip–plane geometry
,”
Appl. Phys. Lett.
121
,
141101
(
2022
).
19.
M.
Gómez Viloria
,
Y.
Guo
,
S.
Merabia
,
P.
Ben-Abdallah
, and
R.
Messina
, “
Role of the Nottingham effect in heat transfer in the extreme near-field regime
,”
Phys. Rev. B
107
,
125414
(
2023
).
20.
R.
Messina
,
S.-A.
Biehs
,
T.
Ziehm
,
A.
Kittel
, and
P.
Ben-Abdallah
, “
Heat transfer between two metals through subnanometric vacuum gaps
,” arXiv:1810.02628 (
2018
).
21.
S.-A.
Biehs
,
R.
Messina
,
P. S.
Venkataram
,
A. W.
Rodriguez
,
J. C.
Cuevas
, and
P.
Ben-Abdallah
, “
Near-field radiative heat transfer in many-body systems
,”
Rev. Mod. Phys.
93
,
025009
(
2021
).
22.
L.
Cui
,
W.
Jeong
,
V.
Fernández-Hurtado
,
J.
Feist
,
F. J.
García-Vidal
,
J. C.
Cuevas
,
E.
Meyhofer
, and
P.
Reddy
, “
Study of radiative heat transfer in Ångström- and nanometre-sized gaps
,”
Nat. Commun.
8
,
14479
(
2017
).
23.
X.
Li
,
W.
Chen
, and
G.
Nagayama
, “
Interfacial thermal resonance in an SiC-SiC nanogap with various atomic surface terminations
,”
Nanoscale
15
,
8603
(
2023
).
24.
J.
Shi
,
P.
Li
,
B.
Liu
, and
S.
Shen
, “
Tuning near field radiation by doped silicon
,”
Appl. Phys. Lett.
102
,
183114
(
2013
).
25.
K.
Kloppstech
,
N.
Könne
,
S.-A.
Biehs
,
A. W.
Rodriguez
,
L.
Worbes
,
D.
Hellmann
, and
A.
Kittel
, “
Giant heat transfer in the crossover regime between conduction and radiation
,”
Nat. Commun.
8
,
14475
(
2017
).
26.
T.
Tokunaga
,
A.
Jarzembski
,
T.
Shiga
,
K.
Park
, and
M.
Francoeur
, “
Extreme near-field heat transfer between gold surfaces
,”
Phys. Rev. B
104
,
125404
(
2021
).
27.
T.
Tokunaga
,
M.
Arai
,
K.
Kobayashi
,
W.
Hayami
,
S.
Suehara
,
T.
Shiga
,
K.
Park
, and
M.
Francoeur
, “
First-principles calculations of phonon transport across a vacuum gap
,”
Phys. Rev. B
105
,
045410
(
2022
).
28.
Y.
Guo
,
C.
Adessi
,
M.
Cobian
, and
S.
Merabia
, “
Atomistic simulation of phonon heat transport across metallic vacuum nanogaps
,”
Phys. Rev. B
106
,
085403
(
2022
).
29.
M.
Gómez Viloria
,
Y.
Guo
,
S.
Merabia
,
R.
Messina
, and
P.
Ben-Abdallah
, “
Radiative heat exchange driven by acoustic vibration modes between two solids at the atomic scale
,”
Phys. Rev. B
108
,
L201402
(
2023
).
30.
M. G.
Viloria
,
P.
Ben-Abdallah
, and
R.
Messina
, “
Electronic heat tunneling between two metals beyond the WKB approximation
,”
Phys. Rev. B
108
,
195420
(
2023
).
31.
P.
Sabbaghi
,
L.
Long
,
X.
Ying
,
L.
Lambert
,
S.
Taylor
,
C.
Messner
, and
L.
Wang
, “
Super-Planckian radiative heat transfer between macroscale metallic surfaces due to near-field and thin-film effects
,”
J. Appl. Phys.
128
,
025305
(
2020
).
32.
W.
Chen
and
G.
Nagayama
, “
Quasi-Casimir coupling induced phonon heat transfer across a vacuum gap
,”
Int. J. Heat Mass Transfer
176
,
121431
(
2021
).
33.
A.
Kittel
,
W.
Müller-Hirsch
,
J.
Parisi
,
S.-A.
Biehs
,
D.
Reddig
, and
M.
Holthaus
, “
Near-field heat transfer in a scanning thermal microscope
,”
Phys. Rev. Lett.
95
,
224301
(
2005
).
34.
A.
Narayanaswamy
,
S.
Shen
, and
G.
Chen
, “
Near-field radiative heat transfer between a sphere and a substrate
,”
Phys. Rev. B
78
,
115303
(
2008
).
35.
C. J.
Fu
and
W. C.
Tan
, “
Near-field radiative heat transfer between two plane surfaces with one having a dielectric coating
,”
J. Quant. Spectrosc. Radiat. Transfer
110
,
1027
(
2009
).
36.
K.
Kim
,
B.
Song
,
V.
Fernández-Hurtado
et al, “
Radiative heat transfer in the extreme near field
,”
Nature
528
,
387
(
2015
).
37.
K.
Joulain
,
Y.
Ezzahri
,
J.
Drevillon
,
B.
Rousseau
, and
D.
De Sousa Meneses
, “
Radiative thermal rectification between SiC and SiO2
,”
Opt. Express
23
,
A1388
(
2015
).
38.
M.
Ghashami
,
H.
Geng
,
T.
Kim
,
N.
Iacopino
,
S. K.
Cho
, and
K.
Park
, “
Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients
,”
Phys. Rev. Lett.
120
,
175901
(
2018
).
39.
J. B.
Pendry
,
K.
Sasihithlu
, and
R. V.
Craster
, “
Phonon-assisted heat transfer between vacuum-separated surfaces
,”
Phys. Rev. B
94
,
075414
(
2016
).
40.
A.
Narayanaswamy
and
G.
Chen
, “
Thermal near-field radiative transfer between two spheres
,”
Phys. Rev. B
77
,
075125
(
2008
).
41.
D. P.
Sellan
,
E. S.
Landry
,
K.
Sasihithlu
,
A.
Narayanaswamy
,
A. J. H.
McGaughey
, and
C. H.
Amon
, “
Phonon transport across a vacuum gap
,”
Phys. Rev. B
85
,
024118
(
2012
).
42.
K.
Park
and
Z.
Zhang
, “
Fundamentals and applications of near-field radiative energy transfer
,”
Front. Heat Mass Transfer
4
,
1–26
(
2013
).
43.
S.
Basu
,
Near-Field radiative heat transfer across nanometer vacuum gaps: fundamentals and applications
(
William Andrew Publishing
,
2016
).
44.
M.
Prunnila
and
J.
Meltaus
, “
Acoustic phonon tunneling and heat transport due to evanescent electric fields
,”
Phys. Rev. Lett.
105
,
125501
(
2010
).
45.
A.
Jarzembski
,
T.
Tokunaga
,
J.
Crossley
,
J.
Yun
,
C.
Shaskey
,
R. A.
Murdick
,
I.
Park
,
M.
Francoeur
, and
K.
Park
, “
Role of acoustic phonon transport in near- to asperity-contact heat transfer
,”
Phys. Rev. B
106
,
205418
(
2022
).
46.
Y.
Guo
,
M.
Gómez Viloria
,
R.
Messina
,
P.
Ben-Abdallah
, and
S.
Merabia
, “
Atomistic modeling of extreme near-field heat transport across nanogaps between two polar dielectric materials
,”
Phys. Rev. B
108
,
085434
(
2023
).
47.
P.-O.
Chapuis
,
S.
Volz
,
C.
Henkel
,
K.
Joulain
, and
J.-J.
Greffet
, “
Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces
,”
Phys. Rev. B
77
,
035431
(
2008
).
48.
A.
Fiorino
,
D.
Thompson
,
L.
Zhu
,
B.
Song
,
P.
Reddy
, and
E.
Meyhofer
, “
Giant enhancement in radiative heat transfer in sub-30 nm gaps of plane parallel surfaces
,”
Nano Lett.
18
,
3711
(
2018
).
49.
A. I.
Volokitin
and
B. N. J.
Persson
, “
Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2
,”
Phys. Rev. B
83
,
241407(R)
(
2011
).
50.
L. M.
Zhang
,
G. O.
Andreev
,
Z.
Fei
,
A. S.
McLeod
,
G.
Dominguez
,
M.
Thiemens
,
A. H.
Castro-Neto
,
D. N.
Basov
, and
M. M.
Fogler
, “
Near-field spectroscopy of silicon dioxide thin films
,”
Phys. Rev. B
85
,
075419
(
2012
).
51.
G.
Domingues
,
S.
Volz
,
K.
Joulain
, and
J.-J.
Greffet
, “
Heat transfer between two nanoparticles through near field interaction
,”
Phys. Rev. Lett.
94
,
085901
(
2005
).
52.
S.
Xiong
,
K.
Yang
,
Y. A.
Kosevich
,
Y.
Chalopin
,
R.
D'Agosta
,
P.
Cortona
, and
S.
Volz
, “
Classical to quantum transition of heat transfer between two silica clusters
,”
Phys. Rev. Lett.
112
,
114301
(
2014
).
53.
T.
Ijiro
and
N.
Yamada
, “
Near-field radiative heat transfer between two parallel SiO2 plates with and without microcavities
,”
Appl. Phys. Lett.
106
,
023103
(
2015
).
54.
B.
Song
,
D.
Thompson
,
A.
Fiorino
,
Y.
Ganjeh
,
P.
Reddy
, and
E.
Meyhofer
, “
Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps
,”
Nat. Nanotechnol.
11
,
509
(
2016
).
55.
L.
Rincón-García
,
D.
Thompson
,
R.
Mittapally
,
N.
Agraït
,
E.
Meyhofer
, and
P.
Reddy
, “
Enhancement and saturation of near-field radiative heat transfer in nanogaps between metallic surfaces
,”
Phys. Rev. Lett.
129
,
145901
(
2022
).
56.
H.
Salihoglu
,
W.
Nam
,
L.
Traverso
,
M.
Segovia
,
P. K.
Venuthurumilli
,
W.
Liu
,
Y.
Wei
,
W.
Li
, and
X.
Xu
, “
Near-field thermal radiation between two plates with sub-10 nm vacuum separation
,”
Nano Lett.
20
,
6091
(
2020
).
57.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
(
1996
).
58.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
et al, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
59.
B. W. H.
van Beest
,
G. J.
Kramer
, and
R. A.
van Santen
, “
Force fields for silicas and aluminophosphates based on ab initio calculations
,”
Phys. Rev. Lett.
64
,
1955
(
1990
).
60.
G. J.
Kramer
,
N. P.
Farragher
,
B. W. H.
van Beest
, and
R. A.
van Santen
, “
Interatomic force fields for silicas, aluminophosphates, and zeolites: Derivation based on ab initio calculations
,”
Phys. Rev. B
43
,
5068
(
1991
).
61.
A. J. H.
McGaughey
and
M.
Kaviany
, “
Thermal conductivity decomposition and analysis using molecular dynamics simulations
,”
Int. J. Heat Mass Transfer
47
,
1799
(
2004
).
62.
J. M.
Larkin
and
A. J. H.
McGaughey
, “
Thermal conductivity accumulation in amorphous silica and amorphous silicon
,”
Phys. Rev. B
89
,
144303
(
2014
).
63.
H.
Farahani
,
A.
Rajabpour
,
M.
Khanaki
, and
A.
Reyhani
, “
Interfacial thermal resistance between few-layer MoS2 and silica substrates: A molecular dynamics study
,”
Comput. Mater. Sci.
142
,
1–6
(
2018
).
64.
Y.
Guissani
and
B.
Guillot
, “
A numerical investigation of the liquid–vapor coexistence curve of silica
,”
J. Chem. Phys.
104
,
7633
(
1996
).
65.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
2021
).
66.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
67.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
68.
K.
Sääskilahti
,
J.
Oksanen
,
J.
Tulkki
, and
S.
Volz
, “
Spectral mapping of heat transfer mechanisms at liquid-solid interfaces
,”
Phys. Rev. E
93
,
052141
(
2016
).
69.
K.
Sääskilahti
,
J.
Oksanen
,
S.
Volz
, and
J.
Tulkki
, “
Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics
,”
Phys. Rev. B
91
,
115426
(
2015
).
70.
K.
Sääskilahti
,
J.
Oksanen
,
J.
Tulkki
, and
S.
Volz
, “
Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces
,”
Phys. Rev. B
90
,
134312
(
2014
).
71.
W.
Chen
and
L.-S.
Li
, “
The study of the optical phonon frequency of 3C-SiC by molecular dynamics simulations with deep neural network potential
,”
J. Appl. Phys.
129
,
244104
(
2021
).
72.
F.
Gangemi
,
A.
Carati
,
L.
Galgani
,
R.
Gangemi
, and
A.
Maiocchi
, “
Agreement of classical Kubo theory with the infrared dispersion curves n(ω) of ionic crystals
,”
Europhys. Lett.
110
,
47003
(
2015
).
73.
A. J.
Slifka
,
B. J.
Filla
, and
J. M.
Phelps
, “
Thermal conductivity of magnesium oxide from absolute, steady-state measurements
,”
J. Res. Natl. Inst. Stand. Technol.
103
,
357
(
1998
).
74.
G. W.
Ford
and
W. H.
Weber
, “
Electromagnetic interactions of molecules with metal surfaces
,”
Phys. Rep.
113
,
195
(
1984
).
You do not currently have access to this content.