Silicon nanowires (SiNWs) have attracted much attention owing to their potential applications in electronics and photonics, while remaining as a cost-effective material platform. Key material properties in engineering SiNWs for different applications include their length, density, and presence of oxides or other chemicals on the surface. However, monitoring these properties is challenging, as scanning electron microscopy and atomic force microscopy (AFM), which directly image the wires, require destructive cleaving of the sample. This paper uses polarized, variable-angle Fourier Transform IR reflectance spectroscopy as a nondestructive technique to characterize the areal density and length of metal-assisted chemically etched SiNW arrays. In addition to the ability to characterize “as-etched” wires, we show that IR spectroscopy can also measure few-nanometer thick layers of aluminum oxide (AlOx) grown radially around the length of the SiNWs utilizing atomic layer deposition. Despite sample inhomogeneities, an effective medium theory (EMT) model can determine the length and density of the NWs for a range of lengths between 3 and 14 μm. The EMT can also reproduce the experimentally measured vibrational bands for coated NWs, demonstrating that IR spectroscopy can also evaluate the presence of molecular contaminants on the wires.

1.
Q. T.
Le
,
A. S.
Shikoh
,
K.
Kang
,
J.
Lee
, and
J.
Kim
, “
Room-temperature sub-ppm detection and machine learning-based high-accuracy selective analysis of ammonia gas using silicon vertical microwire arrays
,”
ACS Appl. Electron. Mater.
5
(
1
),
357
366
(
2023
).
2.
Y.
Yang
,
W.
Yuan
,
W.
Kang
,
Y.
Ye
,
Q.
Pan
,
X.
Zhang
,
Y.
Ke
,
C.
Wang
,
Z.
Qiu
, and
Y.
Tang
, “
A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective
,”
Sustainable Energy Fuels
4
(
4
),
1577
1594
(
2020
).
3.
L.
Baraban
,
B.
Ibarlucea
,
E.
Baek
,
G.
Cuniberti
,
L.
Baraban
,
B.
Ibarlucea
,
E.
Baek
, and
G.
Cuniberti
, “
Hybrid silicon nanowire devices and their functional diversity
,”
Adv. Sci.
6
(
15
),
1900522
(
2019
).
4.
D. P.
Tran
,
T. T. T.
Pham
,
B.
Wolfrum
,
A.
Offenhäusser
, and
B.
Thierry
, “
CMOS-compatible silicon nanowire field-effect transistor biosensor: technology development toward commercialization
,”
Materials
11
(
5
),
785
(
2018
).
5.
Y.
Ke
,
X.
Weng
,
J. M.
Redwing
,
C. M.
Eichfeld
,
T. R.
Swisher
,
S. E.
Mohney
, and
Y. M.
Habib
, “
Fabrication and electrical properties of Si nanowires synthesized by Al catalyzed vapor-liquid-solid growth
,”
Nano Lett.
9
(
12
),
4494
4499
(
2009
).
6.
S. W.
Boettcher
,
J. M.
Spurgeon
,
M. C.
Putnam
,
E. L.
Warren
,
D. B.
Turner-Evans
,
M. D.
Kelzenberg
,
J. R.
Maiolo
,
H. A.
Atwater
, and
N. S.
Lewis
, “
Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes
,”
Science
327
(
5962
),
185
187
(
2010
).
7.
F.
Toor
,
J. B.
Miller
,
L. M.
Davidson
,
W.
Duan
,
M. P.
Jura
,
J.
Yim
,
J.
Forziati
, and
M. R.
Black
, “
Metal assisted catalyzed etched (MACE) black Si: Optics and device physics
,”
Nanoscale
8
(
34
),
15448
15466
(
2016
).
8.
F.
Toor
,
J. B.
Miller
,
L. M.
Davidson
,
L.
Nichols
,
W.
Duan
,
M. P.
Jura
,
J.
Yim
,
J.
Forziati
, and
M. R.
Black
, “
Nanostructured silicon via metal assisted catalyzed etch (MACE): Chemistry fundamentals and pattern engineering
,”
Nanotechnology
27
(
41
),
412003
(
2016
).
9.
A.
Chandra
,
S.
Giri
,
B.
Das
,
S.
Ghosh
,
S.
Sarkar
, and
K. K.
Chattopadhyay
, “
NIR photodetector based on p-silicon nanowires/n-cadmium sulfide nanoscale junctions
,”
Appl. Surf. Sci.
548
,
149256
(
2021
).
10.
N.
Nafie
,
M.
Abouda Lachiheb
,
M.
Ben Rabha
,
W.
Dimassi
, and
M.
Bouaïcha
, “
Effect of the doping concentration on the properties of silicon nanowires
,”
Physica E
56
,
427
430
(
2014
).
11.
B. S.
Yilbas
,
B.
Salhi
,
M. R.
Yousaf
,
F.
Al-Sulaiman
,
H.
Ali
, and
N.
Al-Aqeeli
, “
Surface characteristics of silicon nanowires/nanowalls subjected to octadecyltrichlorosilane deposition and n-octadecane coating
,”
Sci. Rep.
6
,
38678
(
2016
).
12.
F. M.
Kolb
,
H.
Hofmeister
,
R.
Scholz
,
M.
Zacharias
,
U.
Gösele
,
D. D.
Ma
, and
S.-T.
Lee
, “
Analysis of silicon nanowires grown by combining SiO evaporation with the VLS mechanism
,”
J. Electrochem. Soc.
151
(
7
),
G472
(
2004
).
13.
M.
Inês Silva
,
E.
Malitckii
,
T. G.
Santos
, and
P.
Vilaça
, “
Review of conventional and advanced non-destructive testing techniques for detection and characterization of small-scale defects
,”
Prog. Mater. Sci.
138
,
101155
(
2023
).
14.
S.
Mourdikoudis
,
R. M.
Pallares
, and
N. T. K.
Thanh
, “
Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties
,”
Nanoscale
10
(
27
),
12871
12934
(
2018
).
15.
H. G.
Tompkins
and
J. N.
Hilfiker
,
Spectroscopic Ellipsometry: Practical Application to Thin Film Characterization
(
Momentum Press
,
2015
), p.
159
.
16.
J.
Toudert
, “
Spectroscopic ellipsometry for active nano- and meta-materials
,”
Nanotechnol. Rev.
3
(
3
),
223
245
(
2014
).
17.
E. V.
Gurentsov
, “
A review on determining the refractive index function, thermal accommodation coefficient and evaporation temperature of light-absorbing nanoparticles suspended in the gas phase using the laser-induced incandescence
,”
Nanotechnol. Rev.
7
(
6
),
583
604
(
2018
).
18.
M.
Foldyna
,
A. S.
Togonal
,
Rusli
, and
P.
Roca i Cabarrocas
, “
Optimization and optical characterization of vertical nanowire arrays for core-shell structure solar cells
,”
Sol. Energy Mater. Sol. Cells
159
,
640
648
(
2017
).
19.
A.
Mallavarapu
,
B.
Gawlik
,
M.
Grigas
,
M.
Castañeda
,
O.
Abed
,
M. P. C.
Watts
, and
S. V.
Sreenivasan
, “
Scalable fabrication and metrology of silicon nanowire arrays made by metal assisted chemical etch
,”
IEEE Trans. Nanotechnol.
20
,
83
91
(
2021
).
20.
L. W.
Chou
,
N.
Shin
,
S. V.
Sivaram
, and
M. A.
Filler
, “
Tunable mid-infrared localized surface plasmon resonances in silicon nanowires
,”
J. Am. Chem. Soc.
134
(
39
),
16155
16158
(
2012
).
21.
M. D.
Kelzenberg
,
D. B.
Turner-Evans
,
B. M.
Kayes
,
M. A.
Filler
,
M. C.
Putnam
,
N. S.
Lewis
, and
H. A.
Atwater
, “
Photovoltaic measurements in single-nanowire silicon solar cells
,”
Nano Lett.
8
(2), 710–714 (
2008
).
22.
R.
Dhaka
,
S.
Rani
,
A.
Pandey
,
S.
Dutta
, and
A. K.
Shukla
, “
Investigation of structural and infrared characteristics of silicon nanowires for bolometric application
,”
Silicon
15
(
9
),
3969
3976
(
2023
).
23.
Y. F.
Huang
,
S.
Chattopadhyay
,
Y. J.
Jen
,
C. Y.
Peng
,
T. A.
Liu
,
Y. K.
Hsu
,
C. L.
Pan
,
H. C.
Lo
,
C. H.
Hsu
,
Y. H.
Chang
,
C. S.
Lee
,
K. H.
Chen
, and
L. C.
Chen
, “
Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures
,”
Nat. Nanotechnol.
2
(
12
),
770
774
(
2007
).
24.
K.
Menghrajani
, “
Fibre-optic Fabry–Perot sensors: An introduction
,”
Contemp. Phys.
59
(
4
),
402
403
(
2018
).
25.
J.
Elser
,
V. A.
Podolskiy
,
I.
Salakhutdinov
, and
I.
Avrutsky
, “
Nonlocal effects in effective-medium response of nanolayered metamaterials
,”
Appl. Phys. Lett.
90
(
19
),
191109
(
2007
).
26.
W.
Du
,
S.
Zhang
,
J.
Shi
,
J.
Chen
,
Z.
Wu
,
Y.
Mi
,
Z.
Liu
,
Y.
Li
,
X.
Sui
,
R.
Wang
,
X.
Qiu
,
T.
Wu
,
Y.
Xiao
,
Q.
Zhang
, and
X.
Liu
, “
Strong exciton−photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity
,”
ACS Photonics
5
(5), 2051–2059 (2018).
27.
B.
Hua
,
J.
Motohisa
,
Y.
Ding
,
S.
Hara
, and
T.
Fukui
, “
Characterization of Fabry-Ṕrot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy
,”
Appl. Phys. Lett.
91
(
13
), 131112 (
2007
).
28.
J.
Bae
,
H.
Kim
,
X.-M.
Zhang
,
C. H.
Dang
,
Y.
Zhang
,
Y. J.
Choi
,
A.
Nurmikko
, and
Z. L.
Wang
, “
Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters
,”
Nanotechnology
21
,
095502
(
2010
).
29.
G.
Xie
,
Y.
Guo
,
B.
Li
,
L.
Yang
,
K.
Zhang
,
M.
Tang
, and
G.
Zhang
, “
Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires
,”
Phys. Chem. Chem. Phys.
15
(
35
),
14647
14652
(
2013
).
30.
P.
Shekhar
,
J.
Atkinson
, and
Z.
Jacob
, “
Hyperbolic metamaterials: Fundamentals and applications
,”
Nano Convergence
1
(
1
),
1
17
(
2014
).
31.
D. R.
Smith
and
D.
Schurig
, “
Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors
,”
Phys. Rev. Lett.
90
(
7
),
077405
(2003).
32.
H.
Zhang
,
Y.
Shen
,
Y.
Xu
,
H.
Zhu
,
M.
Lei
,
X.
Zhang
, and
M.
Xu
, “
Effective medium theory for two-dimensional random media composed of core–shell cylinders
,”
Opt. Commun.
306
,
9
16
(
2013
).
33.
D. J.
Griffiths
, “Introduction to Electrodynamics,” in Introduction to Electrodynamics (Pearson, 2017).
34.
A.
Paarmann
and
N. C.
Passler
, “
Generalized 4 × 4 matrix formalism for light propagation in anisotropic stratified media: Study of surface phonon polaritons in polar dielectric heterostructures: Erratum
,”
J. Opt. Soc. Am. B
36
(
11
),
3246
3248
(
2019
).
35.
T.
Bartschmid
,
F. J.
Wendisch
,
A.
Farhadi
, and
G. R.
Bourret
, “
Recent advances in structuring and patterning silicon nanowire arrays for engineering light absorption in three dimensions
,”
ACS Appl. Energy Mater.
5
,
5307
5317
(
2021
).
36.
The Mie Theory: Basics and Applications
, edited by
W.
Hergert
and
T.
Wriedt
(
Springer
,
Berlin
,
2012
).
37.
F. J.
Wendisch
,
M.
Abazari
,
V.
Werner
,
H.
Barb
,
M.
Rey
,
E. S. A.
Goerlitzer
,
N.
Vogel
,
H.
Mahdavi
, and
G. R.
Bourret
, “
Spatioselective deposition of passivating and electrocatalytic layers on silicon nanowire arrays
,”
ACS Appl. Mater. Interfaces
12
,
52581
52587
(
2020
).
38.
J. S.
Wong
and
Y. S.
Yen
, “
Intriguing absorption band behavior of IR reflectance spectra of silicon dioxide on silicon
,”
Appl. Spectrosc.
42
(
4
),
598
604
(
1988
).
39.
J.
Kischkat
,
S.
Peters
,
B.
Gruska
,
M.
Semtsiv
,
M.
Chashnikova
,
M.
Klinkmüller
,
O.
Fedosenko
,
S.
MacHulik
,
A.
Aleksandrova
,
G.
Monastyrskyi
,
Y.
Flores
, and
W. T.
Masselink
, “
Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride
,”
Appl. Opt.
51
(
28
),
6789
6798
(
2012
).
40.
S. M. V.
Esfidani
,
D. W.
Keefe
,
F.
Toor
, and
T. G.
Folland
(
2024
). “
Non-destructive characterization of silicon nanowires and nanowire coatings using mid-infrared spectroscopy
,”
Dataset
. https://dx.doi.org/10.25820/data.007060

Supplementary Material

You do not currently have access to this content.