Enantiomer sorting greatly promotes the advancement of chemistry, bioscience, and medicine while also facing significant challenges. Recently, all-optical solutions have attracted considerable interest due to their non-invasiveness. While, it should be noted that the achiral optical force is always much larger than the chiral gradient force that plays a key role in all-optical enantiomer sorting, hindering the separation of enantiomers. Previously proposed methods to boost the chiral gradient forces by plasmonic and photonic nanostructures are often accompanied by the enhancement of achiral optical forces. The sorted chiral particles are also difficult to be transferred from the complex nanostructures. Here, we propose an approach for separating enantiomers using uniform light field formed by two waves, which is capable of sorting deep sub-wavelength chiral particles. In our method, the chiral particles can be sorted within a simple planar structure while the achiral gradient force is equal to zero. Our research reveals a promising perspective on large-scale sorting for enantiomers.

1.
T.
Yu
,
Z. C.
Luo
, and
G. E. W.
Bauer
, “
Chirality as generalized spin-orbit interaction in spintronics
,”
Phys. Rep.
1009
,
1
115
(
2023
).
2.
C.
Caloz
and
A.
Sihvola
, “
Electromagnetic chirality, Part 1: The microscopic perspective [electromagnetic perspectives]
,”
IEEE Antennas Propag. Mag.
62
,
58
71
(
2020
).
3.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
(
Cambridge University Press
,
2004
).
4.
Q.
Zhang
,
J. Q.
Li
, and
X. G.
Liu
, “
Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers
,”
Phys. Chem. Chem. Phys.
21
,
1308
1314
(
2019
).
5.
P.
Kumar
,
T.
Vo
,
M. J.
Cha
,
A.
Visheratina
,
J. Y.
Kim
,
W. Q.
Xu
,
J.
Schwartz
,
A.
Simon
,
D.
Katz
,
V. P.
Nicu
,
E.
Marino
,
W. J.
Choi
,
M.
Veksler
,
S.
Chen
,
C.
Murray
,
R.
Hovden
,
S.
Glotzer
, and
N. A.
Kotov
, “
Photonically active bowtie nanoassemblies with chirality continuum
,”
Nature
615
,
418
(
2023
).
6.
L. A.
Warning
,
A. R.
Miandashti
,
L. A.
McCarthy
,
Q. F.
Zhang
,
C. F.
Landes
, and
S.
Link
, “
Nanophotonic approaches for chirality sensing
,”
ACS Nano
15
,
15538
15566
(
2021
).
7.
E.
Mohammadi
,
K. L.
Tsakmakidis
,
A. N.
Askarpour
,
P.
Dehkhoda
,
A.
Tavakoli
, and
H.
Altug
, “
Nanophotonic platforms for enhanced chiral sensing
,”
ACS Photonics
5
,
2669
2675
(
2018
).
8.
V. V.
Klimov
,
I. V.
Zabkov
,
A. A.
Pavlov
, and
D. V.
Guzatov
, “
Eigen oscillations of a chiral sphere and their influence on radiation of chiral molecules
,”
Opt. Express
22
,
18564
18578
(
2014
).
9.
J.
Yamanishi
,
H. Y.
Ahn
,
H.
Yamane
,
S.
Hashiyada
,
H.
Ishihara
,
K. T.
Nam
, and
H.
Okamoto
, “
Optical gradient force on chiral particles
,”
Sci. Adv.
8
,
eabq2604
(
2022
).
10.
R. M.
Kim
,
J. H.
Huh
,
S.
Yoo
,
T. G.
Kim
,
C.
Kim
,
H.
Kim
,
J. H.
Han
,
N. H.
Cho
,
Y. C.
Lim
,
S. W.
Im
,
E.
Im
,
J. R.
Jeong
,
M. H.
Lee
,
T. Y.
Yoon
,
H. Y.
Lee
,
Q. H.
Park
,
S.
Lee
, and
K. T.
Nam
, “
Enantioselective sensing by collective circular dichroism
,”
Nature
612
,
470
(
2022
).
11.
L. G.
Xu
,
X. X.
Wang
,
W. W.
Wang
,
M. Z.
Sun
,
W. J.
Choi
,
J. Y.
Kim
,
C. L.
Hao
,
S.
Li
,
A. H.
Qu
,
M. R.
Lu
,
X. L.
Wu
,
F. M.
Colombari
,
W. R.
Gomes
,
A. L.
Blanco
,
A. F.
de Moura
,
X.
Guo
,
H.
Kuang
,
N. A.
Kotov
, and
C. L.
Xu
, “
Enantiomer-dependent immunological response to chiral nanoparticles
,”
Nature
601
,
366
(
2022
).
12.
M. L.
Solomon
,
J.
Hu
,
M.
Lawrence
,
A.
Garcia-Etxarri
, and
J. A.
Dionne
, “
Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces
,”
ACS Photonics
6
,
43
49
(
2019
).
13.
Y. Z.
Shi
,
T. T.
Zhu
,
T. H.
Zhang
,
A.
Mazzulla
,
D. P.
Tsai
,
W. Q.
Ding
,
A. Q.
Liu
,
G.
Cipparrone
,
J. J.
Saenz
, and
C. W.
Qiu
, “
Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation
,”
Light: Sci. Appl.
9
,
62
(
2020
).
14.
C.
Dressel
,
T.
Reppe
,
M.
Prehm
,
M.
Brautzsch
, and
C.
Tschierske
, “
Chiral self-sorting and amplification in isotropic liquids of achiral molecules
,”
Nat. Chem.
6
,
971
977
(
2014
).
15.
L. A.
Papp
,
G.
Hancu
,
H.
Kelemen
, and
G.
Toth
, “
Chiral separation in the class of proton pump inhibitors by chromatographic and electromigration techniques: An overview
,”
Electrophoresis
42
,
1761
1789
(
2021
).
16.
R. P.
Cameron
,
S. M.
Barnett
, and
A. M.
Yao
, “
Discriminatory optical force for chiral molecules
,”
New J. Phys.
16
,
013020
(
2014
).
17.
L.
Hu
,
Z. G.
Sun
,
Y. D.
Nie
,
Y. Z.
Huang
, and
Y. R.
Fang
, “
Plasmonic and photonic enhancement of chiral near-fields
,”
Laser Photonics Rev.
16
,
2200035
(
2022
).
18.
D. S.
Bradshaw
and
D. L.
Andrews
, “
Laser optical separation of chiral molecules
,”
Opt. Lett.
40
,
677
680
(
2015
).
19.
D. S.
Bradshaw
and
D. L.
Andrews
, “
Chiral discrimination in optical trapping and manipulation
,”
New J. Phys.
16
,
103021
(
2014
).
20.
S. B.
Wang
and
C. T.
Chan
, “
Lateral optical force on chiral particles near a surface
,”
Nat. Commun.
5
,
3307
(
2014
).
21.
Y.
Shi
,
X.
Xu
,
M.
Nieto-Vesperinas
,
Q.
Song
,
A. Q.
Liu
,
G.
Cipparrone
,
Z.
Su
,
B.
Yao
,
Z.
Wang
,
C.-W.
Qiu
, and
X.
Cheng
, “
Advances in light transverse momenta and optical lateral forces
,”
Adv. Opt. Photonics
15
,
835
906
(
2023
).
22.
C.
Genet
, “
Chiral light-chiral matter interactions: An optical force perspective
,”
ACS Photonics
9
,
319
332
(
2022
).
23.
Y. Q.
Tang
and
A. E.
Cohen
, “
Optical chirality and its interaction with matter
,”
Phys. Rev. Lett.
104
,
163901
(
2010
).
24.
Y.
Chen
,
H. C.
Deng
,
X. B.
Sha
,
W. J.
Chen
,
R. Z.
Wang
,
Y. H.
Chen
,
D.
Wu
,
J. R.
Chu
,
Y. S.
Kivshar
,
S. M.
Xiao
, and
C. W.
Qiu
, “
Observation of intrinsic chiral bound states in the continuum
,”
Nature
613
,
474
(
2023
).
25.
M. H.
Alizadeh
and
B. M.
Reinhard
, “
Transverse chiral optical forces by chiral surface plasmon polaritons
,”
ACS Photonics
2
,
1780
1788
(
2015
).
26.
M. M.
Li
,
S. H.
Yan
,
Y. N.
Zhang
,
X.
Chen
, and
B. L.
Yao
, “
Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum
,”
Nanoscale Adv.
3
,
6897
6902
(
2021
).
27.
H. J.
Chen
,
C. H.
Liang
,
S. Y.
Liu
, and
Z. F.
Lin
, “
Chirality sorting using two-wave-interference-induced lateral optical force
,”
Phys. Rev. A
93
,
053833
(
2016
).
28.
M. M.
Li
,
S. H.
Yan
,
Y. A.
Zhang
,
Y. S.
Liang
,
P.
Zhang
, and
B. L.
Yao
, “
Optical sorting of small chiral particles by tightly focused vector beams
,”
Phys. Rev. A
99
,
033825
(
2019
).
29.
Y. Z.
Shi
,
T. T.
Zhu
,
J. Q.
Liu
,
D. P.
Tsai
,
H.
Zhang
,
S. B.
Wang
,
C. T.
Chan
,
P. C.
Wu
,
A. V.
Zayats
,
F.
Nori
, and
A. Q.
Liu
, “
Stable optical lateral forces from inhomogeneities of the spin angular momentum
,”
Sci. Adv.
8
,
eabn2291
(
2022
).
30.
G.
Tkachenko
and
E.
Brasselet
, “
Spin controlled optical radiation pressure
,”
Phys. Rev. Lett.
111
,
033605
(
2013
).
31.
G.
Tkachenko
and
E.
Brasselet
, “
Helicity-dependent three-dimensional optical trapping of chiral microparticles
,”
Nat. Commun.
5
,
4491
(
2014
).
32.
R.
Ali
,
R. S.
Dutra
,
F. A.
Pinheiro
, and
P. A. M.
Neto
, “
Enantioselection and chiral sorting of single microspheres using optical pulling forces
,”
Opt. Lett.
46
,
1640
1643
(
2021
).
33.
G.
Tkachenko
and
E.
Brasselet
, “
Optofluidic sorting of material chirality by chiral light
,”
Nat. Commun.
5
,
3577
(
2014
).
34.
Z. H.
Lin
,
J. W.
Zhang
, and
J. S.
Huang
, “
Plasmonic elliptical nanoholes for chiroptical analysis and enantioselective optical trapping
,”
Nanoscale
13
,
9185
9192
(
2021
).
35.
J.
Mun
,
M.
Kim
,
Y.
Yang
,
T.
Badloe
,
J. C.
Ni
,
Y.
Chen
,
C. W.
Qiu
, and
J.
Rho
, “
Electromagnetic chirality: From fundamentals to nontraditional chiroptical phenomena
,”
Light: Sci. Appl.
9
,
139
(
2020
).
36.
T. H.
Zhang
,
M. R. C.
Mahdy
,
Y. M.
Liu
,
J. H.
Teng
,
C. T.
Lim
,
Z.
Wang
, and
C. W.
Qiu
, “
All-optical chirality-sensitive sorting via reversible lateral forces in interference fields
,”
ACS Nano
11
,
4292
4300
(
2017
).
37.
K. Y.
Bliokh
and
F.
Nori
, “
Characterizing optical chirality
,”
Phys. Rev. A
83
,
021803
(
2011
).
38.
N.
Kravets
,
A.
Aleksanyan
, and
E.
Brasselet
, “
Chiral optical Stern-Gerlach Newtonian experiment
,”
Phys. Rev. Lett.
122
,
024301
(
2019
).
39.
Y. Q.
Tang
and
A. E.
Cohen
, “
Enhanced enantioselectivity in excitation of chiral molecules by superchiral light
,”
Science
332
,
333
336
(
2011
).
40.
J. W.
Zhang
,
S. Y.
Huang
,
Z. H.
Lin
, and
J. S.
Huang
, “
Generation of optical chirality patterns with plane waves, evanescent waves and surface plasmon waves
,”
Opt. Express
28
,
760
772
(
2020
).
41.
Y.
Li
,
C.
Bruder
, and
C. P.
Sun
, “
Generalized Stern-Gerlach effect for chiral molecules
,”
Phys. Rev. Lett.
99
,
130403
(
2007
).
42.
G.
Pellegrini
,
M.
Finazzi
,
M.
Celebrano
,
L.
Duò
,
M. A.
Iatì
,
O. M.
Maragò
, and
P.
Biagioni
, “
Superchiral surface waves for all-optical enantiomer separation
,”
J. Phys. Chem. C
123
,
28336
28342
(
2019
).
43.
S. S.
Hou
,
Y.
Liu
,
W. X.
Zhang
, and
X. D.
Zhang
, “
Separating and trapping of chiral nanoparticles with dielectric photonic crystal slabs
,”
Opt. Express
29
,
15177
15189
(
2021
).
44.
R.
Ali
,
F. A.
Pinheiro
,
R. S.
Dutra
,
F. S.
Rosa
, and
P. A. M.
Neto
, “
Enantioselective manipulation of single chiral nanoparticles using optical tweezers
,”
Nanoscale
12
,
5031
5037
(
2020
).
45.
L.
Fang
and
J.
Wang
, “
Optical trapping separation of chiral nanoparticles by subwavelength slot waveguides
,”
Phys. Rev. Lett.
127
,
233902
(
2021
).
46.
P.
Acebal
,
L.
Carretero
, and
S.
Blaya
, “
Design of an optical conveyor for selective separation of a mixture of enantiomers
,”
Opt. Express
25
,
32290
32304
(
2017
).
47.
T.
Cao
and
Y. M.
Qiu
, “
Lateral sorting of chiral nanoparticles using fano-enhanced chiral force in visible region
,”
Nanoscale
10
,
566
574
(
2018
).
48.
Y.
Zhao
,
A. A. E.
Saleh
, and
J. A.
Dionne
, “
Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers
,”
ACS Photonics
3
,
304
309
(
2016
).
49.
A.
Hayat
,
J. P. B.
Mueller
, and
F.
Capasso
, “
Lateral chirality-sorting optical forces
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
13190
13194
(
2015
).
50.
M.
Nieto-Vesperinas
,
J. J.
Saenz
,
R.
Gomez-Medina
, and
L.
Chantada
, “
Optical forces on small magnetodielectric particles
,”
Opt. Express
18
,
11428
11443
(
2010
).
51.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
John Wiley & Sons
,
1983
).
52.
E. M.
Purcell
and
C. R.
Pennypacker
, “
Scattering and absorption of light by nonspherical dielectric grains
,”
Astrophys. J.
186
,
705
714
(
1973
).
53.
M.
Hentschel
,
M.
Schaferling
,
X. Y.
Duan
,
H.
Giessen
, and
N.
Liu
, “
Chiral plasmonics
,”
Sci. Adv.
3
,
e1602735
(
2017
).
54.
W.
Ma
,
L. G.
Xu
,
A. F.
de Moura
,
X. L.
Wu
,
H.
Kuang
,
C. L.
Xu
, and
N. A.
Kotov
, “
Chiral inorganic nanostructures
,”
Chem. Rev.
117
,
8041
8093
(
2017
).
55.
G.
Volpe
and
G.
Volpe
, “
Simulation of a Brownian particle in an optical trap
,”
Am. J. Phys.
81
,
224
230
(
2013
).
56.
S.
Albaladejo
,
M. I.
Marques
,
F.
Scheffold
, and
J. J.
Saenz
, “
Giant enhanced diffusion of gold nanoparticles in optical vortex fields
,”
Nano Lett.
9
,
3527
3531
(
2009
).
You do not currently have access to this content.