Li metal is a promising negative-electrode material for high-energy-density all-solid-state batteries. However, the surface of Li metal is prone to oxidation, which results in the formation of a contamination layer at the Li metal–solid electrolyte interface. This interfacial contamination layer is the root cause of short-circuiting and poor cycle stability, thus hindering the development of all-solid-state batteries. Prior studies have not quantitatively assessed the effect of the above layer on battery performance. Herein, the degradation mechanisms affecting the interface are investigated using alternating-current impedance measurements and Li plating–stripping cycle tests for a symmetric cell. A thin contamination layer results in a Li–electrolyte interface with a low resistance of 0.20 kΩ cm2 and stable Li plating–stripping behavior at a current density of 3 mA cm−2, whereas a thick contamination layer results in a high interfacial resistance of 2.0 kΩ cm2. The thinning of the contamination layer on Li metal enhances the stability of the Li–electrolyte interface and Li plating–stripping kinetics.

1.
A. L.
Robinson
and
J.
Janek
,
MRS Bull.
39
,
1046
1047
(
2014
).
2.
T.
Famprikis
,
P.
Canepa
,
J. A.
Dawson
,
M. S.
Islam
, and
C.
Masquelier
,
Nat. Mater.
18
,
1278
1291
(
2019
).
3.
Y.
Ye
,
W.
Huang
,
R.
Xu
,
X.
Xiao
,
W.
Zhang
,
H.
Chen
,
J.
Wan
,
F.
Liu
,
H. K.
Lee
,
J.
Xu
,
Z.
Zhang
,
Y.
Peng
,
H.
Wang
,
X.
Gao
,
Y.
Wu
,
G.
Zhou
, and
Y.
Cui
,
Adv. Mater.
34
(
36
),
2202848
(
2022
).
4.
Y.
Kato
,
S.
Hori
,
T.
Saito
,
K.
Suzuki
,
M.
Hirayama
,
A.
Mitsui
,
M.
Yonemura
,
H.
Iba
, and
R.
Kanno
,
Nat. Energy
1
,
16030
(
2016
).
5.
E. J.
Cheng
,
Y.
Kushida
,
T.
Abe
, and
K.
Kanamura
,
ACS Appl. Mater. Interfaces
14
(
36
),
40881
40889
(
2022
).
6.
M. S.
Whittingham
,
Proc. IEEE
100
,
1518
1534
(
2012
).
7.
W.
Xu
,
J.
Wang
,
F.
Ding
,
X.
Chen
,
E.
Nasybulin
,
Y.
Zhang
, and
J.-G.
Zhang
,
Energy Environ. Sci.
7
(
2
),
513
537
(
2014
).
8.
S.
Flandrois
and
B.
Simon
,
Carbon
37
(
2
),
165
180
(
1999
).
9.
M. S.
Kim
,
Z.
Zhang
,
P. E.
Rudnicki
,
Z.
Yu
,
J.
Wang
,
H.
Wang
,
S. T.
Oyakhire
,
Y.
Chen
,
S. C.
Kim
,
W.
Zhang
,
D. T.
Boyle
,
X.
Kong
,
R.
Xu
,
Z.
Huang
,
W.
Huang
,
S. F.
Bent
,
L.
Wang
,
J.
Qin
,
Z.
Bao
, and
Y.
Cui
,
Nat. Mater.
21
,
445
454
(
2022
).
10.
M.
Otoyama
,
M.
Suyama
,
C.
Hotehama
,
H.
Kowada
,
Y.
Takeda
,
K.
Ito
,
A.
Sakuda
,
M.
Tatsumisago
, and
A.
Hayashi
,
ACS Appl. Mater. Interfaces
13
(
4
),
5000
5007
(
2021
).
11.
Y.
Lee
,
S.
Fujiki
,
C.
Jung
,
N.
Suzuki
,
N.
Yashiro
,
R.
Omoda
,
D.
Ko
,
T.
Shiratsuchi
,
T.
Sugimoto
,
S.
Ryu
,
J. H.
Ku
,
T.
Watanabe
,
Y.
Park
,
Y.
Aihara
,
D.
Im
, and
I. T.
Han
,
Nat. Energy
5
,
299
(
2020
).
12.
S.
Luo
,
Z.
Wang
,
X.
Li
,
X.
Liu
,
H.
Wang
,
W.
Ma
,
L.
Zhang
,
L.
Zhu
, and
X.
Zhang
,
Nat. Commun.
12
,
6968
(
2021
).
13.
B.
Chen
,
C.
Xu
,
H.
Wang
, and
J.
Zhou
,
Curr. Appl. Phys.
19
(
2
),
149
154
(
2019
).
14.
S.
Wenzel
,
S. J.
Sedlmaier
,
C.
Dietrich
,
W. G.
Zeier
, and
J.
Janek
,
Solid State Ionics
318
,
102
112
(
2018
).
15.
S.
Wenzel
,
D. A.
Weber
,
T.
Leichtweiss
,
M. R.
Busche
,
J.
Sann
, and
J.
Janek
,
Solid State Ionics
286
,
24
33
(
2016
).
16.
T.
Cheng
,
B. V.
Merinov
,
S.
Morozov
, and
W. A.
Goddard
,
ACS Energy Lett.
2
(
6
),
1454
1459
(
2017
).
17.
Y.
Zhu
,
X.
He
, and
Y.
Mo
,
ACS Appl. Mater. Interfaces
7
(
42
),
23685
23693
(
2015
).
18.
C.
Park
,
S.
Lee
,
M.
Kim
,
S.
Min
,
G.
Kim
,
S.
Park
, and
D.
Shin
,
Electrochim. Acta
390
,
138808
(
2021
).
19.
J.
Becking
,
A.
Gröbmeyer
,
M.
Kolek
,
U.
Rodehorst
,
S.
Schulze
,
M.
Winter
,
P.
Bieker
, and
M. C.
Stan
,
Adv. Mater. Interfaces
4
(
16
),
1700166
(
2017
).
20.
R.
Schmitz
,
R.
Müller
,
S.
Krüger
,
R. W.
Schmitz
,
S.
Nowak
,
S.
Passerini
,
M.
Winter
, and
C.
Schreiner
,
J. Power Sources
217
,
98
101
(
2012
).
21.
C.
Wang
,
J. T.
Kim
,
C.
Wang
, and
X.
Sun
,
Adv. Mater.
35
(
19
),
2209074
(
2023
).
22.
G.
Liu
,
J.
Shi
,
M.
Zhu
,
W.
Weng
,
L.
Shen
,
J.
Yang
, and
X.
Yao
,
Energy Storage Mater.
38
,
249
254
(
2021
).
23.
R.
Garcia-Mendez
,
J. G.
Smith
,
J. C.
Neuefeind
,
D. J.
Siegel
, and
J.
Sakamoto
,
Adv. Energy Mater.
10
(
19
),
2000335
(
2020
).
24.
Z.
Luo
,
X.
Qiu
,
C.
Liu
,
S.
Li
,
C.
Wang
,
G.
Zou
,
H.
Hou
, and
X.
Ji
,
Nano Energy
79
,
105507
(
2021
).
25.
Y.
Watanabe
,
S.
Kobayashi
,
I.
Sugiyama
,
K.
Nishio
,
W.
Liu
,
S.
Watanabe
,
R.
Shimizu
, and
T.
Hitosugi
,
ACS Appl. Mater. Interfaces
11
(
48
),
45150
45154
(
2019
).
26.
H.
Kawasoko
,
T.
Shirasawa
,
S.
Shiraki
,
T.
Suzuki
,
S.
Kobayashi
,
K.
Nishio
,
R.
Shimizu
, and
T.
Hitosugi
,
ACS Appl. Energy Mater.
3
(
2
),
1358
1363
(
2020
).
27.
D.
Imazeki
,
C. C.
van Gils
,
K.
Nishio
,
R.
Shimizu
, and
T.
Hitosugi
,
ACS Appl. Energy Mater.
3
(
9
),
8338
8343
(
2020
).
28.
M.
Haruta
,
S.
Shiraki
,
T.
Suzuki
,
A.
Kumatani
,
T.
Ohsawa
,
Y.
Takagi
,
R.
Shimizu
, and
T.
Hitosugi
,
Nano Lett.
15
(
3
),
1498
1502
(
2015
).
29.
D.
Cheng
,
T. A.
Wynn
,
X.
Wang
,
S.
Wang
,
M.
Zhang
,
R.
Shimizu
,
S.
Bai
,
H.
Nguyen
,
C.
Fang
,
M.
Kim
,
W.
Li
,
B.
Lu
,
S. J.
Kim
, and
Y. S.
Meng
,
Joule
4
(
11
),
2484
2500
(
2020
).
30.
Z.
Chang
,
H.
Yang
,
A.
Pan
,
P.
He
, and
H.
Zhou
,
Nat. Commun.
13
,
6788
(
2022
).
31.
R.
Shimizu
,
S.
Kobayashi
,
Y.
Watanabe
,
Y.
Ando
, and
T.
Hitosugi
,
APL Mater.
8
(
11
),
111110
(
2020
).
32.
B.
Fleutot
,
B.
Pecquenard
,
H.
Martinez
,
M.
Letellier
, and
A.
Levasseur
,
Solid State Ionics
186
(
1
),
29
36
(
2011
).
33.
C.
Heubner
,
M.
Schneider
, and
A.
Michaelis
,
Adv. Energy Mater.
10
(
2
),
1902523
(
2020
).
34.
J.
Zheng
,
Q.
Zhao
,
X.
Liu
,
T.
Tang
,
D. C.
Bock
,
A. M.
Bruck
,
K. R.
Tallman
,
L. M.
Housel
,
A. M.
Kiss
,
A. C.
Marschilok
,
E. S.
Takeuchi
,
K. J.
Takeuchi
, and
L. A.
Archer
,
ACS Energy Lett.
4
(
1
),
271
275
(
2019
).

Supplementary Material

You do not currently have access to this content.