InAs0.9Sb0.1-based nBn structures for mid-wave infrared detection are designed and prepared by molecular beam epitaxy. The structural, electrical, and optical properties are characterized, based on which the density-functional theory calculation is carried out by combining with the hybrid HSE06 exchange-correlation function. The results demonstrate that (i) the calculated bandgap for InAs0.9Sb0.1 is well consistent with that of optical spectroscopies (∼266 meV, or a cutoff wavelength of ∼4.66 μm), suggesting the practical effectivity of the theoretical model; (ii) the valence band offset of the unbiased InAs0.9Sb0.1/AlAs0.1Sb0.9 nBn structure is determined as ∼105 meV, with ignorable influence on the hole transport of the devices by considering the rather low dark current when working at a high temperature of ∼150 K; and (iii) the conduction band offset of InAs0.9Sb0.1/GaSb is roughly ∼0.6 eV. This work not only provides a strategy for effectively evaluating the InAs1−xSbx bandgap both theoretically and experimentally but also offers a more reliable basis for fabricating high-performance mid-infrared detectors with high operating temperatures.

1.
J. C.
Woolley
and
B. A.
Smith
,
Proc. Phys. Soc.
72
(
2
),
214
(
1958
).
2.
S.
Maimon
and
G. W.
Wicks
,
Appl. Phys. Lett.
89
(
15
),
151109
(
2006
).
3.
A.
Soibel
,
C. J.
Hill
,
S. A.
Keo
,
L.
Hoglund
,
R.
Rosenberg
,
R.
Kowalczyk
,
A.
Khoshakhlagh
,
A.
Fisher
,
D. Z.-Y.
Ting
, and
S. D.
Gunapala
,
Appl. Phys. Lett.
105
(
2
),
023512
(
2014
).
4.
L.
She
,
J.
Jiang
,
W.
Chen
,
S.
Cui
,
D.
Jiang
,
G.
Wang
,
Y.
Xu
,
H.
Hao
,
D.
Wu
, and
Y.
Ding
,
Infrared Phys. Technol.
121
,
104015
(
2022
).
5.
M.
Shaveisi
and
P.
Aliparast
,
Appl. Opt.
62
(
10
),
2675
2683
(
2023
).
6.
Y. X.
Lin
,
D.
Donetsky
,
D.
Wang
,
D.
Westerfeld
,
G.
Kipshidze
,
L.
Shterengas
,
W. L.
Sarney
,
S. P.
Svensson
, and
G.
Belenky
,
J. Electron. Mater.
44
(
10
),
3360
3366
(
2015
).
7.
S.
Tomasulo
,
C. A.
Affouda
,
N. A.
Mahadik
,
M. E.
Twigg
,
M. K.
Yakes
, and
E. H.
Aifer
,
J. Vac. Sci. Technol., B
36
(
2
),
02D108
(
2018
).
8.
K.
Murawski
,
E.
Gomolka
,
M.
Kopytko
,
K.
Grodecki
,
K.
Michalczewski
,
L.
Kubiszyn
,
W.
Gawron
,
P.
Martyniuk
,
A.
Rogalski
, and
J.
Piotrowski
,
Prog. Nat. Sci.: Mater. Int.
29
(
4
),
472
476
(
2019
).
9.
A. D.
Becke
,
J. Chem. Phys.
140
(
18
),
18A301
(
2014
).
10.
A. T.
Newell
,
J. V.
Logan
,
R. A.
Carrasco
,
Z. M.
Alsaad
,
C. P.
Hains
,
J. M.
Duran
,
G.
Ariyawansa
,
G.
Balakrishnan
,
D.
Maestas
,
C. P.
Morath
,
S. D.
Hawkins
,
A.
Hendrickson
, and
P. T.
Webster
,
Appl. Phys. Lett.
122
(
17
),
171102
(
2023
).
11.
D. Z.
Ting
,
A.
Soibel
,
A.
Khoshakhlagh
,
S. B.
Rafol
,
S. A.
Keo
,
L.
Höglund
,
A. M.
Fisher
,
E. M.
Luong
, and
S. D.
Gunapala
,
Appl. Phys. Lett.
113
(
2
),
021101
(
2018
).
12.
Y.
Chen
,
Y.
Wang
,
Z.
Wang
,
Y.
Gu
,
Y.
Ye
,
X.
Chai
,
J.
Ye
,
Y.
Chen
,
R.
Xie
,
Y.
Zhou
,
Z.
Hu
,
Q.
Li
,
L.
Zhang
,
F.
Wang
,
P.
Wang
,
J.
Miao
,
J.
Wang
,
X.
Chen
,
W.
Lu
,
P.
Zhou
, and
W.
Hu
,
Nat. Electron.
4
(
5
),
357
363
(
2021
).
13.
J.
Tong
,
Y.
Xie
,
P.
Ni
,
Z.
Xu
,
S.
Qiu
,
L. Y. M.
Tobing
, and
D.-H.
Zhang
,
Phys. Scr.
91
(
11
),
115801
(
2016
).
14.
A. R.
Denton
and
N. W.
Ashcroft
,
Phys. Rev. A
43
(
6
),
3161
3164
(
1991
).
15.
M.
Erkus
and
U.
Serincan
,
Appl. Surf. Sci.
318
,
28
31
(
2014
).
16.
H. N.
Liu
,
Y.
Zhang
,
E. H.
Steenbergen
,
S.
Liu
,
Z. Y.
Lin
,
Y. H.
Zhang
,
J.
Kim
,
M. H.
Ji
,
T.
Detchprohm
,
R. D.
Dupuis
,
J. K.
Kim
,
S. D.
Hawkins
, and
J. F.
Klem
,
Phys. Rev. Appl.
8
(
3
),
034028
(
2017
).
17.
L.
Huang
,
Z. F.
Li
,
P. P.
Chen
,
Y. H.
Zhang
, and
W.
Lu
,
J. Appl. Phys.
113
(
21
),
213112
(
2013
).
18.
K.
Grodecki
,
K.
Murawski
,
K.
Michalczewski
,
B.
Budner
, and
P.
Martyniuk
,
AIP Adv.
9
(
2
),
025107
(
2019
).
19.
D. O.
Alshahrani
,
M.
Kesaria
,
E. A.
Anyebe
,
V.
Srivastava
, and
D. L.
Huffaker
,
Adv. Photonics Res.
3
(
2
),
2100094
(
2022
).
20.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
(
22
),
224106
(
2006
).
21.
S.
Zulkifal
,
Z.
Wang
,
X.
Zhang
,
S.
Siddique
,
Y.
Yu
,
C.
Wang
,
Y.
Gong
,
S.
Li
,
D.
Li
,
Y.
Zhang
,
P.
Wang
, and
G.
Tang
,
Adv. Sci.
10
(
17
),
2206342
(
2023
).
22.
V.
Michaud-Rioux
,
L.
Zhang
, and
H.
Guo
,
J. Comput. Phys.
307
,
593
613
(
2016
).
23.
G.
Hussain
,
G.
Cuono
,
R.
Islam
,
A.
Trajnerowicz
,
C.
Autieri
,
T.
Dietl
, and
J.
Jurenczyk
,
J. Phys. D
55
(
49
),
495301
(
2022
).
24.
A.
Patra
,
M.
Chakraborty
, and
A.
Roy
,
Nanoscale
8
(
42
),
18143
18149
(
2016
).
25.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
,
J. Appl. Phys.
89
(
11
),
5815
5875
(
2001
).
26.
P. T.
Webster
,
N. A.
Riordan
,
S.
Liu
,
E. H.
Steenbergen
,
R. A.
Synowicki
,
Y. H.
Zhang
, and
S. R.
Johnson
,
J. Appl. Phys.
118
(
24
),
245706
(
2015
).
27.
J.
Hong
,
H.
Wen
,
J.
He
,
J.
Liu
,
Y.
Dan
,
J. W.
Tomm
,
F.
Yue
,
J.
Chu
, and
C.
Duan
,
Photonics Res.
9
(
5
),
714
721
(
2021
).
28.
J.
Shao
,
X.
,
W.
Lu
,
F. Y.
Yue
,
W.
Huang
,
N.
Li
,
J.
Wu
,
L.
He
, and
J. H.
Chu
,
Appl. Phys. Lett.
90
(
17
),
171101
(
2007
).
29.
J.
Shao
, “
Effective mass and valence-band structure in GaInAs/InP and GaInP/AlGaInP quantum wells
,”
Ph.D. thesis
(
University of Stuttgart
,
2002
).
30.
S.
Adachi
,
J. Appl. Phys.
66
(
12
),
6030
6040
(
1989
).
You do not currently have access to this content.