Antiferroelectric materials have recently received renewed attention due to the increased demand for energy-storage ceramics and power electronics applications. This study demonstrates antiferroelectricity in a titanite-type oxide, SrTiGeO5, through direct observation of a double D-E hysteresis loop by polarization measurements. Temperature dependence of dielectric permittivity shows a cusp around 550 K, indicating a relatively high antiferroelectric phase transition temperature for SrTiGeO5. It is suggested that an electric-field-induced rise of permittivity in SrTiGeO5 has the potential for application in protective circuits of power electronics devices. The present study paves the way for the development of innovative antiferroelectric applications.

1.
Z.
Liu
,
T.
Lu
,
J.
Ye
,
G.
Wang
,
X.
Dong
,
R.
Withers
, and
Y.
Liu
, “
Antiferroelectrics for energy storage applications: A review
,”
Adv. Mater. Technol.
3
(
9
),
1800111
(
2018
).
2.
D.
Yang
,
J.
Gao
,
L.
Shu
,
Y.-X.
Liu
,
J.
Yu
,
Y.
Zhang
,
X.
Wang
,
B.-P.
Zhang
, and
J.-F.
Li
, “
Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications
,”
J. Mater. Chem. A
8
(
45
),
23724
23737
(
2020
).
3.
C. A.
Randall
,
Z.
Fan
,
I.
Reaney
,
L.-Q.
Chen
, and
S.
Trolier-McKinstry
, “
Antiferroelectrics: History, fundamentals, crystal chemistry, crystal structures, size effects, and applications
,”
J. Am. Ceram. Soc.
104
(
8
),
3775
3810
(
2021
).
4.
D.
Neumayr
,
D.
Bortis
,
J. W.
Kolar
,
M.
Koini
, and
J.
Konrad
, “
Comprehensive large-signal performance analysis of ceramic capacitors for power pulsation buffers
,” in
IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL)
(
IEEE
,
Trondheim, Norway
,
2016
), pp
1
8
.
5.
D.
Fu
and
M.
Itoh
, “
Ferroelectricity in silver perovskite oxides
,” in
Ferroelectrics—Material Aspects
, edited by
M.
Lallart
(
InTech
,
2011
).
6.
M.
Yashima
,
S.
Matsuyama
,
R.
Sano
,
M.
Itoh
,
K.
Tsuda
, and
D.
Fu
, “
Structure of ferroelectric silver niobate AgNbO3
,”
Chem. Mater.
23
(
7
),
1643
1645
(
2011
).
7.
N.
Luo
,
L.
Ma
,
G.
Luo
,
C.
Xu
,
L.
Rao
,
Z.
Chen
,
Z.
Cen
,
Q.
Feng
,
X.
Chen
,
F.
Toyohisa
,
Y.
Zhu
,
J.
Hong
,
J.-F.
Li
, and
S.
Zhang
, “
Well-defined double hysteresis loop in NaNbO3 antiferroelectrics
,”
Nat. Commun.
14
,
1776
(
2023
).
8.
G.
Shirane
,
E.
Sawaguchi
, and
Y.
Takagi
, “
Dielectric properties of lead zirconate
,”
Phys. Rev.
84
(
3
),
476
481
(
1951
).
9.
E.
Sawaguchi
,
H.
Maniwa
, and
S.
Hoshino
, “
Antiferroelectric structure of lead zirconate
,”
Phys. Rev.
83
(
5
),
1078
1078
(
1951
).
10.
D.
Damjanovic
, “
Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics
,”
Rep. Prog. Phys.
61
(
9
),
1267
(
1998
).
11.
R.
Guo
,
L. E.
Cross
,
S.-E.
Park
,
B.
Noheda
,
D. E.
Cox
, and
G.
Shirane
, “
Origin of the high piezoelectric response in PbZr1−xTixO3
,”
Phys. Rev. Lett.
84
(
23
),
5423
5426
(
2000
).
12.
S.
Trolier-McKinstry
and
P.
Muralt
, “
Thin film piezoelectrics for MEMS
,”
J. Electroceram.
12
(
1
),
7
17
(
2004
).
13.
E. K.
Akdogan
,
M.
Allahverdi
, and
A.
Safari
, “
Piezoelectric composites for sensor and actuator applications
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
52
(
5
),
746
775
(
2005
).
14.
C. R.
Robbins
, “
Synthetic CaTiSiO5 and its germanium analogue (CaTiGeO5)
,”
Mater. Res. Bull.
3
(
8
),
693
698
(
1968
).
15.
J. A.
Speer
and
G. V.
Gibbs
, “
The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites
,”
Am. Miner.
61
(
3–4
),
238
247
(
1976
).
16.
M.
Taylor
and
G. E.
Brown
, “
High-temperature structural study of the P21/A<–>A2/a phase transition in synthetic titanite, CaTiSiO5
,”
Am. Miner.
61
(5-6),
435
447
(
1976
).
17.
S.
Ghose
,
Y.
Ito
, and
D. M.
Hatch
, “
Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5
,”
Phys. Chem. Miner.
17
(
7
),
591
603
(
1991
).
18.
C.
Van Heurck
,
G.
Van Tendeloo
,
S.
Ghose
, and
S.
Amelinckx
, “
Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5
,”
Phys. Chem. Miner.
17
(
7
),
604
610
(
1991
).
19.
T.
Malcherek
,
C.
Paulmann
,
M. C.
Domeneghetti
, and
U.
Bismayer
, “
Diffuse scattering anisotropy and the P21/a ↔ A2/a phase transition in titanite, CaTiOSiO4
,”
J. Appl. Crystallogr.
34
(
2
),
108
113
(
2001
).
20.
T.
Malcherek
and
M.
Fischer
, “
Phase transitions of titanite CaTiSiO5 from density functional perturbation theory
,”
Phys. Rev. Mater.
2
(
2
),
023602
(
2018
).
21.
B. V.
Mill'
,
E. L.
Belokoneva
, and
A. V.
Butashin
, “
Synthesis and crystal structure of compounds A+M5+GeO5 (A=Li, Na; M=Nb, Ta, Sb) and LiTaSiO5
,”
Sov. Phys. Crystallogr.
35
(
2
),
176
180
(
1990
).
22.
E. L.
Belokoneva
, “
Crystalline structure of NaSbGeO5—An analog of the sphene mineral CaTiSiO5
,”
J. Struct. Chem.
34
(
2
),
334
335
(
1993
).
23.
E. L.
Belokoneva
, “
The structures of new germanates, gallates, borates, and silicates with laser, piezoelectric, ferroelectric, and ion-conducting properties
,”
Russ. Chem. Rev.
63
(
7
),
533
549
(
1994
).
24.
U.
Troitzsch
and
D. J.
Ellis
, “
The synthesis and crystal structure of CaAlFSiO4, the Al-F analog of titanite
,”
Am. Miner.
84
(
7
),
1162
1169
(
1999
).
25.
T.
Malcherek
, “
Structure and phase transitions of LiTaOGeO4
,”
Acta Crystallogr., Sect. B: Struct. Sci.
58
(
4
),
607
612
(
2002
).
26.
T.
Malcherek
and
A.
Bosenick
, “
Structure and phase transition of CaGe2O5 revisited
,”
Phys. Chem. Miner.
31
(
4
),
224
231
(
2004
).
27.
T.
Malcherek
,
A.
Bosenick
,
L.
Cemič
,
M.
Fechtelkord
, and
A.
Guttzeit
, “
Isomorphy of structural phase transitions in LiTaOSiO4, LiTaOGeO4 and titanite, CaTiOSiO4
,”
J. Solid State Chem.
177
(
10
),
3254
3262
(
2004
).
28.
T.
Malcherek
,
M.
Borowski
, and
A.
Bosenick
, “
Structure and phase transitions of CaTaOAlO4
,”
J. Appl. Crystallogr.
37
(
1
),
117
122
(
2004
).
29.
R.
Ellemann-Olesen
, “
A high-temperature diffraction study of the solid solution CaTiOSiO4-CaTiOGeO4
,”
Am. Miner.
90
(
8–9
),
1325
1334
(
2005
).
30.
R.
Ellemann-Olesen
and
T.
Malcherek
, “
Temperature and composition dependence of structural phase transitions in Ca(TixZr1−x)OGeO4
,”
Am. Miner.
90
(
4
),
687
694
(
2005
).
31.
R.
Ellemann-Olesen
and
T.
Malcherek
, “
The structure of SrTiOGeO4 and its solid solution with CaTiOGeO4
,”
Phys. Chem. Miner.
32
(
8–9
),
531
545
(
2005
).
32.
T.
Malcherek
and
R.
Ellemann-Olesen
, “
CaZrGeO5 and the triclinic instability of the titanite structure type
,”
Z. Kristallogr. Cryst. Mater.
220
(
8
),
712
716
(
2005
).
33.
T.
Malcherek
,
B.
Paulenz
,
M.
Fischer
, and
C.
Paulmann
, “
The modulated low-temperature structure of malayaite, CaSnOSiO4
,”
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
76
(
3
),
316
321
(
2020
).
34.
I.
Tanaka
,
T.
Obuchi
, and
H.
Kojima
, “
Growth and characterization of titanite (CaTiSiO5) single crystals by the floating zone method
,”
J. Cryst. Growth
87
(
2
),
169
174
(
1988
).
35.
J.
Kimura
,
H.
Taniguchi
,
T.
Iijima
,
T.
Shimizu
,
S.
Yasui
,
M.
Itoh
, and
H.
Funakubo
, “
High temperature stability of the dielectric and insulating properties of Ca(Ti,Zr)SiO5 ceramics
,”
Appl. Phys. Lett.
108
(
6
),
062902
(
2016
).
36.
X.
Peng
,
Z.
Liu
,
Y.
Gu
,
F.
Zhang
, and
Y.
Li
, “
Dielectric properties of (Al3+, Nb5+) Co-doped CaTiSiO5 ceramics at elevated temperature
,”
J. Phys. Chem. Solids
132
,
83
88
(
2019
).
37.
M.
Ando
and
Y.
Higashida
, “
Millimeter-wave dielectric properties of titanite-based ceramics with nominal composition CaTi1-xNb4x/5SiO5
,”
J. Jpn. Soc. Powder Powder Metall.
67
(
7
),
396
399
(
2020
).
38.
T.
Murata
,
T.
Asaka
, and
S.
Hirose
, “
Nonlinear dielectric response and positive dielectric tunability in antipolar CaTiSiO5
,”
J. Am. Ceram. Soc.
104
(
11
),
5794
5802
(
2021
).
39.
K.
Du
,
F.
Wang
,
X.-Q.
Song
,
Y.-B.
Guo
,
X.-C.
Wang
,
W.-Z.
Lu
, and
W.
Lei
, “
Correlation between crystal structure and dielectric characteristics of Ti4+ substituted CaSnSiO5 ceramics
,”
J. Eur. Ceram. Soc
41
(
4
),
2568
2578
(
2021
).
40.
K.
Du
,
C.-Z.
Yin
,
Y.-B.
Guo
,
X.-C.
Wang
,
W.-Z.
Lu
, and
W.
Lei
, “
Phase transition and permittivity stability against temperature of CaSn1−xTixGeO5 ceramics
,”
J. Eur. Ceram. Soc
42
(
1
),
147
153
(
2022
).
41.
P. S.
Dobal
,
R. S.
Katiyar
,
S. S. N.
Bharadwaja
, and
S. B.
Krupanidhi
, “
Micro-Raman and dielectric phase transition studies in antiferroelectric PbZrO3 thin films
,”
Appl. Phys. Lett
78
,
1730
1732
(
2001
).
42.
E.
Sawaguchi
, “
Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3
,”
J. Phys. Soc. Jpn.
8
(
5
),
615
(
1953
).
You do not currently have access to this content.