We present a high throughput computational search for altermagnetism in two-dimensional (2D) materials based on the Computational 2D Materials Database (C2DB). We start by showing that the symmetry requirements for altermagnetism in 2D are somewhat more strict compared to bulk materials and applying these yields a total of seven altermagnets in the C2DB. The collinear ground state in these monolayers is verified by spin spiral calculations using the generalized Bloch theorem. We focus on four d-wave altermagnetic materials belonging to the P 2 1 / c magnetic space group—RuF4, VF4, AgF2, and OsF4. The first three of these are known experimentally as van der Waals bonded bulk materials and are likely to be exfoliable from their bulk parent compounds. We perform a detailed analysis of the electronic structure and non-relativistic spin splitting in k-space exemplified by RuF4. The magnon spectrum of RuF4 is calculated from the magnetic force theorem, and it is shown that the symmetries that enforce degenerate magnon bands in anti-ferromagnets are absent in altermagnets and give rise to the non-degenerate magnon spectrum. We then include spin–orbit effects and show that these will dominate the splitting of magnons in RuF4. Finally, we provide an example of i-wave altermagnetism in the 2H-phase of FeBr3.

1.
S.
Hayami
,
Y.
Yanagi
, and
H.
Kusunose
, “
Momentum-dependent spin splitting by collinear antiferromagnetic ordering
,”
J. Phys. Soc. Jpn.
88
,
123702
(
2019
).
2.
L.-D.
Yuan
,
Z.
Wang
,
J.-W.
Luo
,
E. I.
Rashba
, and
A.
Zunger
, “
Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets
,”
Phys. Rev. B
102
,
014422
(
2020
).
3.
L.
Šmejkal
,
A. H.
MacDonald
,
J.
Sinova
,
S.
Nakatsuji
, and
T.
Jungwirth
, “
Anomalous hall antiferromagnets
,”
Nat. Rev. Mater.
7
,
482
(
2022
).
4.
Q.
Cui
,
B.
Zeng
,
P.
Cui
,
T.
Yu
, and
H.
Yang
, “
Efficient spin Seebeck and spin Nernst effects of magnons in altermagnets
,”
Phys. Rev. B
108
,
L180401
(
2023
).
5.
L.
Šmejkal
,
J.
Sinova
, and
T.
Jungwirth
, “
Emerging research landscape of altermagnetism
,”
Phys. Rev. X
12
,
040501
(
2022
).
6.
L.
Šmejkal
,
A.
Marmodoro
,
K.-H.
Ahn
,
R.
González-Hernández
,
I.
Turek
,
S.
Mankovsky
,
H.
Ebert
,
S. W.
D'Souza
,
O.
Šipr
,
J.
Sinova
et al, “
Chiral magnons in altermagnetic RuO2
,”
Phys. Rev. Lett.
131
,
256703
(
2023
).
7.
Z.-F.
Gao
,
S.
Qu
,
B.
Zeng
,
J.-R.
Wen
,
H.
Sun
,
P.
Guo
, and
Z.-Y.
Lu
, “
Ai-accelerated discovery of altermagnetic materials
,” arXiv:2311.04418 (
2023
).
8.
X.
Chen
,
J.
Ren
,
J.
Li
,
Y.
Liu
, and
Q.
Liu
, “
Spin space group theory and unconventional magnons in collinear magnets
,” arXiv:2307.12366 (
2023
).
9.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
et al, “
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,”
Nature
546
,
270
(
2017
).
10.
Z.
Fei
,
B.
Huang
,
P.
Malinowski
,
W.
Wang
,
T.
Song
,
J.
Sanchez
,
W.
Yao
,
D.
Xiao
,
X.
Zhu
,
A. F.
May
et al, “
Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2
,”
Nat. Mater.
17
,
778
(
2018
).
11.
X.
Wang
,
K.
Du
,
Y. Y. F.
Liu
,
P.
Hu
,
J.
Zhang
,
Q.
Zhang
,
M. H. S.
Owen
,
X.
Lu
,
C. K.
Gan
,
P.
Sengupta
et al, “
Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals
,”
2D Mater.
3
,
031009
(
2016
).
12.
J.-U.
Lee
,
S.
Lee
,
J. H.
Ryoo
,
S.
Kang
,
T. Y.
Kim
,
P.
Kim
,
C.-H.
Park
,
J.-G.
Park
, and
H.
Cheong
, “
Ising-type magnetic ordering in atomically thin FePS3
,”
Nano Lett.
16
,
7433
(
2016
).
13.
Q.
Song
,
C. A.
Occhialini
,
E.
Ergeçen
,
B.
Ilyas
,
D.
Amoroso
,
P.
Barone
,
J.
Kapeghian
,
K.
Watanabe
,
T.
Taniguchi
,
A. S.
Botana
,
S.
Picozzi
,
N.
Gedik
, and
R.
Comin
, “
Evidence for a single-layer van der Waals multiferroic
,”
Nature
602
,
601
(
2022
).
14.
H.-Y.
Ma
,
M.
Hu
,
N.
Li
,
J.
Liu
,
W.
Yao
,
J.-F.
Jia
, and
J.
Liu
, “
Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current
,”
Nat. Commun.
12
,
2846
(
2021
).
15.
Q.
Cui
,
Y.
Zhu
,
X.
Yao
,
P.
Cui
, and
H.
Yang
, “
Giant spin-hall and tunneling magnetoresistance effects based on a two-dimensional nonrelativistic antiferromagnetic metal
,”
Phys. Rev. B
108
,
024410
(
2023
).
16.
X.
Chen
,
D.
Wang
,
L.
Li
, and
B.
Sanyal
, “
Giant spin-splitting and tunable spin-momentum locked transport in room temperature collinear antiferromagnetic semimetallic CrO monolayer
,”
Appl. Phys. Lett.
123
,
022402
(
2023
).
17.
P.-J.
Guo
,
Z.-X.
Liu
, and
Z.-Y.
Lu
, “
Quantum anomalous hall effect in collinear antiferromagnetism
,”
npj Comput. Mater.
9
,
70
(
2023
).
18.
S.-D.
Guo
,
X.-S.
Guo
,
K.
Cheng
,
K.
Wang
, and
Y. S.
Ang
, “
Piezoelectric altermagnetism and spin-valley polarization in Janus monolayer Cr2SO
,” arXiv:2306.04094 (
2023
).
19.
N. D.
Mermin
and
H.
Wagner
, “
Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models
,”
Phys. Rev. Lett.
17
,
1133
(
1966
).
20.
B. I.
Halperin
, “
On the Hohenberg–Mermin–Wagner theorem and its limitations
,”
J. Stat. Phys.
175
,
521
(
2019
).
21.
L.
Šmejkal
,
J.
Sinova
, and
T.
Jungwirth
, “
Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry
,”
Phys. Rev. X
12
,
031042
(
2022
).
22.
M. N.
Gjerding
,
A.
Taghizadeh
,
A.
Rasmussen
,
S.
Ali
,
F.
Bertoldo
,
T.
Deilmann
,
N. R.
Knøsgaard
,
M.
Kruse
,
A. H.
Larsen
,
S.
Manti
,
T. G.
Pedersen
,
U.
Petralanda
,
T.
Skovhus
,
M. K.
Svendsen
,
J. J.
Mortensen
,
T.
Olsen
, and
K. S.
Thygesen
, “
Recent progress of the computational 2D materials database (C2DB)
,”
2D Mater.
8
,
044002
(
2021
).
23.
J.
Sødequist
and
T.
Olsen
, “
Magnetic order in the computational 2D materials database (C2DB) from high throughput spin spiral calculations
,” arXiv:2309.11945 (
2023
).
24.
D.
Torelli
and
T.
Olsen
, “
First principles Heisenberg models of 2D magnetic materials: The importance of quantum corrections to the exchange coupling
,”
J. Phys.: Condens. Matter
32
,
335802
(
2020
).
25.
A.
Togo
and
I.
Tanaka
, see https://github.com/spglib/spglib for “
Spglib : A software library for crystal symmetry search
” (
2018
).
26.
K.
Shinohara
,
A.
Togo
, and
I.
Tanaka
, “
Algorithms for magnetic symmetry operation search and identification of magnetic space group from magnetic crystal structure
,”
Acta Crystallogr. A
79
,
390
(
2023
).
27.
J.
Sødequist
and
T.
Olsen
, “
Type II multiferroic order in two-dimensional transition metal halides from first principles spin-spiral calculations
,”
2D Mater.
10
,
035016
(
2023
).
28.
P.
Kurz
,
F.
Förster
,
L.
Nordström
,
G.
Bihlmayer
, and
S.
Blügel
, “
Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method
,”
Phys. Rev. B
69
,
024415
(
2004
).
29.
K.
Knöpfle
,
L.
Sandratskii
, and
J.
Kübler
, “
Spin spiral ground state of γ-iron
,”
Phys. Rev. B
62
,
5564
(
2000
).
30.
J.
Enkovaara
,
C.
Rostgaard
,
J. J.
Mortensen
,
J.
Chen
,
M.
Dułak
,
L.
Ferrighi
,
J.
Gavnholt
,
C.
Glinsvad
,
V.
Haikola
,
H. A.
Hansen
,
H. H.
Kristoffersen
,
M.
Kuisma
,
A. H.
Larsen
,
L.
Lehtovaara
,
M.
Ljungberg
,
O.
Lopez-Acevedo
,
P. G.
Moses
,
J.
Ojanen
,
T.
Olsen
,
V.
Petzold
,
N. A.
Romero
,
J.
Stausholm-Møller
,
M.
Strange
,
G. A.
Tritsaris
,
M.
Vanin
,
M.
Walter
,
B.
Hammer
,
H.
Häkkinen
,
G. K. H.
Madsen
,
R. M.
Nieminen
,
J. K.
Nørskov
,
M.
Puska
,
T. T.
Rantala
,
J.
Schiøtz
,
K. S.
Thygesen
,
K. W.
Jacobsen
, et al “
Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method
,”
J. Phys.: Condens. Matter
22
,
253202
(
2010
).
31.
J. J.
Mortensen
,
A. H.
Larsen
,
M.
Kuisma
,
A. V.
Ivanov
,
A.
Taghizadeh
,
A.
Peterson
,
A.
Haldar
,
A. O.
Dohn
,
C.
Schäfer
,
E. Ö.
Jónsson
et al, “
GPAW: Open python package for electronic-structure calculations
,” arXiv:2310.14776 (
2023
).
32.
R.
Allmann
and
R.
Hinek
, “
The introduction of structure types into the Inorganic Crystal Structure Database ICSD
,”
Acta Crystallogr. A
63
,
412
(
2007
).
33.
S.
Gražulis
,
A.
Daškevič
,
A.
Merkys
,
D.
Chateigner
,
L.
Lutterotti
,
M.
Quirós
,
N. R.
Serebryanaya
,
P.
Moeck
,
R. T.
Downs
, and
A. L.
Bail
, “
Crystallography open database (COD): An open-access collection of crystal structures and platform for world-wide collaboration
,”
Nucl. Acids Res.
40
,
D420
(
2011
).
34.
S. M.
Young
and
C. L.
Kane
, “
Dirac semimetals in two dimensions
,”
Phys. Rev. Lett.
115
,
126803
(
2015
).
35.
Y.
Zhao
and
A. P.
Schnyder
, “
Nonsymmorphic symmetry-required band crossings in topological semimetals
,”
Phys. Rev. B
94
,
195109
(
2016
).
36.
F. L.
Durhuus
,
T.
Skovhus
, and
T.
Olsen
, “
Plane wave implementation of the magnetic force theorem for magnetic exchange constants: application to bulk Fe, Co and Ni
,”
J. Phys.: Condens. Matter
35
,
105802
(
2023
).
37.
T.
Skovhus
and
T.
Olsen
, “
Magnons in antiferromagnetic bcc Cr and Cr2O3 from time-dependent density functional theory
,”
Phys. Rev. B
106
,
085131
(
2022
).
38.
A.
Liechtenstein
,
M.
Katsnelson
,
V.
Antropov
, and
V.
Gubanov
, “
Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys
,”
J. Magn. Magn. Mater.
67
,
65
(
1987
).
39.
T.
Olsen
, “
Designing in-plane heterostructures of quantum spin Hall insulators from first principles: 1T′-MoS2 with adsorbates
,”
Phys. Rev. B
94
,
235106
(
2016
).
You do not currently have access to this content.