A high-electron-mobility transistor (HEMT) structure consisting of a 15-nm-thick quaternary AlGaInN top barrier layer, a thin 200-nm-thick unintentionally doped (UID) GaN channel layer, and an AlN back barrier was grown on a single-crystal AlN substrate by metal–organic chemical vapor deposition. The HEMTs fabricated on the grown heterostructure exhibited DC pinch-off characteristics with no large negative resistance owing to the high thermal conductivity of the AlN substrate. The 2-μm-gate-length devices showed the maximum current density of 500 mA/mm and the peak transconductance of 120 mS/mm with the threshold voltage of approximately −4 V. The off-state leakage was less than 30 μA/mm thanks to the thin UID-GaN channel with good crystal quality. The pulsed IV characteristics for the fabricated HEMTs showed much smaller drain current decreasing compared to the same structured HEMTs with a C-doped GaN back barrier on a SiC substrate. This indicates that the UID-GaN channel grown on the AlN substrate had no harmful impurity levels that cause the current collapse phenomenon. The above-mentioned results demonstrate that the combination of the thin UID-GaN channel and the AlN back barrier works effectively in GaN HEMTs, and it will contribute to the device design and fabrication for future high-power/high-frequency applications.

1.
R.
Mitova
,
R.
Ghosh
,
U.
Mhaskar
,
D.
Klikic
,
M.-X.
Wang
, and
A.
Dentella
,
IEEE Trans. Power Electron.
29
,
2441
(
2014
).
2.
A. S.
Augustine Fletcher
and
D.
Nirmal
,
Superlattices Microstruct.
109
,
519
(
2017
).
3.
X.
Hu
,
J.
Deng
,
N.
Pala
,
R.
Gaska
,
M. S.
Shur
,
C. Q.
Chen
,
J.
Yang
,
G.
Simin
,
M. A.
Khan
,
J. C.
Rojo
, and
L. J.
Schowalter
,
Appl. Phys. Lett.
82
,
1299
(
2003
).
4.
W. C.
Mitchel
,
S.
Elhamri
,
G.
Landis
,
R.
Gaska
,
S. B.
Schujman
, and
L. J.
Schowalter
,
Phys. Status Solidi C
5
,
1550
(
2008
).
5.
M.
Miyoshi
,
S.
Tanaka
,
T.
Kawaide
, and
A.
Inoue
,
Phys. Status Solidi A
220
,
2200733
(
2023
).
6.
T.
Kim
,
J.
Kim
,
R.
Dalmau
,
R.
Schlesser
,
E.
Preble
, and
X.
Jiang
,
IEEE Trans. Ultrason, Ferroelect, Freq. Control
62
,
1880
(
2015
).
7.
G. A.
Slack
,
R. A.
Tanzilli
,
R. O.
Pohl
, and
J. W.
Vandersande
,
J. Phys. Chem. Solids
48
,
641
(
1987
).
8.
R.
Rounds
,
B.
Sarkar
,
A.
Klump
,
C.
Hartmann
,
T.
Nagashima
,
R.
Kirste
,
A.
Franke
,
M.
Bickermann
,
Y.
Kumagai
, and
Z.
Sitar
,
Appl. Phys. Express
11
,
071001
(
2018
).
9.
A. V.
Inyushkin
,
A. N.
Taldenkov
,
D. A.
Chernodubov
,
E. N.
Mokhov
,
S. S.
Nagalyuk
,
V. G.
Ralchenko
, and
A. A.
Khomich
,
J. Appl. Phys.
127
,
205109
(
2020
).
10.
S.
Tamariz
,
G.
Callsen
, and
N.
Grandjean
,
Appl. Phys. Lett.
114
,
082101
(
2019
).
11.
B.
Sarkar
,
S.
Mita
,
P.
Reddy
,
A.
Klump
,
F.
Kaess
,
J.
Tweedie
,
I.
Bryan
,
Z.
Bryan
,
R.
Kirste
,
E.
Kohn
,
R.
Collazo
, and
Z.
Sitar
,
Appl. Phys. Lett.
111
,
032109
(
2017
).
12.
D. S.
Lee
,
X.
Gao
,
S.
Guo
, and
T.
Palacios
,
IEEE Electron Device Lett.
32
,
617
(
2011
).
13.
A.
Malmros
,
P.
Gamarra
,
M.
Thorsell
,
H.
Hjelmgren
,
C.
Lacam
,
S. L.
Delage
,
H.
Zirat
, and
N.
Rorsman
,
IEEE Trans. Electron Devices
66
,
364
(
2019
).
14.
S.
Tanabe
,
N.
Watanabe
,
M.
Uchida
, and
H.
Matsuzaki
,
Phys. Status Solidi A
213
,
1236
(
2016
).
15.
Z.
Bougrioua
,
M.
Azize
,
P.
Lorenzini
,
M.
Laügt
, and
H.
Haas
,
Phys. Status Solidi A
202
,
536
(
2005
).
16.
M.
Ťapajna
,
N.
Killat
,
J.
Moereke
,
T.
Paskova
,
K. R.
Evans
,
J.
Leach
,
X.
Li
,
Ü.
Özgür
,
H.
Morkoç
,
K. D.
Chabak
,
A.
Crespo
,
J. K.
Gillespie
,
R.
Fitch
,
M.
Kossler
,
D. E.
Walker
,
M.
Trejo
,
G. D.
Via
,
J. D.
Blevins
, and
M.
Kuball
,
IEEE Electron Device Lett.
33
,
1126
(
2012
).
17.
Y.
Ando
,
S.
Kaneki
, and
T.
Hashizume
,
Appl. Phys. Express
12
,
024002
(
2019
).
18.
D.
Tanaka
,
K.
Iso
, and
J.
Suda
,
J. Appl. Phys.
133
,
055701
(
2023
).
19.
Y.
Ando
,
R.
Makisako
,
H.
Takahashi
,
A.
Wakejima
, and
J.
Suda
,
IEEE Trans. Electron Devices
69
,
88
(
2022
).
20.
K.
Harrouche
,
S.
Venkatachalam
,
F.
Grandpierron
,
E.
Okada
, and
F.
Medjdoub
,
Appl. Phys. Express
15
,
116504
(
2022
).
21.
X.
Wang
,
Z.
Lin
,
Y.
Zhang
,
J.
Wang
, and
K.
Xu
,
AIP Adv.
13
,
095107
(
2023
).
22.
Y.
Ando
,
H.
Takahashi
,
R.
Makisako
,
A.
Wakejima
, and
J.
Suda
,
Electron. Lett.
59
,
e12798
(
2023
).
23.
D.
Hosomi
,
H.
Chen
,
T.
Egawa
, and
M.
Miyoshi
,
Jpn. J. Appl. Phys., Part 1
58
,
011004
(
2019
).
24.
F.
Lecourt
,
A.
Agboton
,
N.
Ketteniss
,
H.
Behmenburg
,
N.
Defrance
,
V.
Hoel
,
H.
Kalisch
,
A.
Vescan
,
M.
Heuken
, and
J.-C.
De Jaeger
,
IEEE Electron Device Lett.
34
,
978
(
2013
).
25.
R.
Wang
,
G.
Li
,
G.
Karbasian
,
J.
Guo
,
B.
Song
,
Y.
Yue
,
Z.
Hu
,
O.
Laboutin
,
Y.
Cao
,
W.
Johnson
,
G.
Snider
,
P.
Fay
,
D.
Jena
, and
H. G.
Xing
,
IEEE Electron Device Lett.
34
,
378
(
2013
).
26.
K.
Makiyama
,
S.
Ozaki
,
T.
Ohki
,
N.
Okamoto
,
Y.
Minoura
,
Y.
Niida
,
Y.
Kamada
,
K.
Joshin
,
K.
Watanabe
, and
Y.
Miyamoto
, in
Technical Digest - International Electron Devices Meeting (IEDM)
, Washington, DC (
2015
).
27.
T.
Kubo
,
J. J.
Freedsman
,
Y.
Yoshida
, and
T.
Egawa
,
Jpn. J. Appl. Phys., Part 1
54
,
020301
(
2015
).
28.
H. I.
Fujishiro
,
N.
Mikami
, and
M.
Hatakenaka
,
Phys. Status Solidi C
2
,
2696
(
2005
).
29.
R.
Rodríguez
,
B.
González
,
J.
García
,
F. M.
Yigletu
,
J. M.
Tirado
,
B.
Iñiguez
, and
A.
Nunez
,
Phys. Status Solidi A
212
,
1130
(
2015
).
You do not currently have access to this content.