Nano-engineering crystalline materials can be used to tailor their thermal properties. By adding new nanoscale phonon scattering centers and controlling their size, one can effectively decrease the phonon mean free path, hence the thermal conductivity of a fully crystalline material. In this Letter, we use the 3ω method in the temperature range of 100–300 K to experimentally report on the more than threefold reduction of the thermal conductivity of an epitaxially grown crystalline germanium thin film with embedded polydispersed crystalline Ge3Mn5 nano-inclusions with diameters ranging from 5 to 25 nm. A detailed analysis of the structure of the thin film coupled with Monte Carlo simulations of phonon transport highlights the role of the nano-inclusions volume fraction in the reduction of the phononic contribution to the thermal conductivity, in particular its temperature dependence, leading to a phonon mean free path that is set by geometrical constraints.

1.
Z.
Yan
,
D. L.
Nika
, and
A. A.
Balandin
, “
Thermal properties of graphene and few-layer graphene: Applications in electronics
,”
IET Circuits, Devices Syst.
9
,
4
12
(
2015
).
2.
M.
Le Gallo
and
A.
Sebastian
, “
An overview of phase-change memory device physics
,”
J. Phys. D: Appl. Phys.
53
,
213002
(
2020
).
3.
A. A.
Balandin
, “
Nanophononics: Phonon engineering in nanostructures and nanodevices
,”
J. Nanosci. Nanotechnol.
5
,
1015
1022
(
2005
).
4.
W.
Kim
,
J.
Zide
,
A.
Gossard
,
D.
Klenov
,
S.
Stemmer
,
A.
Shakouri
, and
A.
Majumdar
, “
Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors
,”
Phys. Rev. Lett.
96
,
045901
(
2006
).
5.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C.-I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
, “
High-performance bulk thermoelectrics with all-scale hierarchical architectures
,”
Nature
489
,
414
418
(
2012
).
6.
D.
Li
,
Y.
Wu
,
P.
Kim
,
L.
Shi
,
P.
Yang
, and
A.
Majumdar
, “
Thermal conductivity of individual silicon nanowires
,”
Appl. Phys. Lett.
83
,
2934
2936
(
2003
).
7.
J.-S.
Heron
,
C.
Bera
,
T.
Fournier
,
N.
Mingo
, and
O.
Bourgeois
, “
Blocking phonons via nanoscale geometrical design
,”
Phys. Rev. B
82
,
155458
(
2010
).
8.
J.-K.
Yu
,
S.
Mitrovic
,
D.
Tham
,
J.
Varghese
, and
J. R.
Heath
, “
Reduction of thermal conductivity in phononic nanomesh structures
,”
Nat. Nanotechnol.
5
,
718
721
(
2010
).
9.
P. E.
Hopkins
,
C. M.
Reinke
,
M. F.
Su
,
R. H.
Olsson
,
E. A.
Shaner
,
Z. C.
Leseman
,
J. R.
Serrano
,
L. M.
Phinney
, and
I.
El-Kady
, “
Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning
,”
Nano Lett.
11
,
107
112
(
2011
).
10.
R.
Yanagisawa
,
J.
Maire
,
A.
Ramiere
,
R.
Anufriev
, and
M.
Nomura
, “
Impact of limiting dimension on thermal conductivity of one-dimensional silicon phononic crystals
,”
Appl. Phys. Lett.
110
,
133108
(
2017
).
11.
S.
Lee
,
H.
Yoo
,
W.-Y.
Won
,
H.
Cho
,
M.
Seo
,
B. D.
Kong
,
M.
Meyyappan
, and
C.-K.
Baek
, “
Thermal conductivity reduction by scallop shaped surface modulation in silicon nanowires
,”
Appl. Phys. Lett.
116
,
203901
(
2020
).
12.
R.
Anufriev
,
R.
Yanagisawa
, and
M.
Nomura
, “
Aluminium nanopillars reduce thermal conductivity of silicon nanobeams
,”
Nanoscale
9
,
15083
15088
(
2017
).
13.
Z.
Yu
,
Z.
Ren
, and
J.
Lee
, “
Phononic topological insulators based on six-petal holey silicon structures
,”
Sci. Rep.
9
,
1805
(
2019
).
14.
M.
Sledzinska
,
B.
Graczykowski
,
J.
Maire
,
E.
Chavez–Angel
,
C. M.
Sotomayor–Torres
, and
F.
Alzina
, “
2D phononic crystals: Progress and prospects in hypersound and thermal transport engineering
,”
Adv. Funct. Mater.
30
,
1904434
(
2020
).
15.
A.
Tavakoli
,
K.
Lulla
,
T.
Crozes
,
N.
Mingo
,
E.
Collin
, and
O.
Bourgeois
, “
Heat conduction measurements in ballistic 1D phonon waveguides indicate breakdown of the thermal conductance quantization
,”
Nat. Commun.
9
,
4287
(
2018
).
16.
J. R.
Scotsman
,
R. J.
Pcionek
,
H.
Kong
,
C.
Uher
, and
M. G.
Kanatzidis
, “
Strong reduction of thermal conductivity in nanostructured PbTe prepared by matrix encapsulation
,”
Chem. Mater.
18
,
4993
4995
(
2006
).
17.
N.
Mingo
,
D.
Hauser
,
N. P.
Kobayashi
,
M.
Plissonnier
, and
A.
Shakouri
, ““
Nanoparticle-in-Alloy” Approach to Efficient Thermoelectrics: Silicides in SiGe
,”
Nano Lett.
9
,
711
715
(
2009
).
18.
S.
Wang
and
N.
Mingo
, “
Improved thermoelectric properties of Mg2SixGeySn1−xy nanoparticle-in-alloy materials
,”
Appl. Phys. Lett.
94
,
203109
(
2009
).
19.
A. M. S.
Mohammed
,
Y. R.
Koh
,
B.
Vermeersch
,
H.
Lu
,
P. G.
Burke
,
A. C.
Gossard
, and
A.
Shakouri
, “
Fractal Lévy heat transport in nanoparticle embedded semiconductor alloys
,”
Nano Lett.
15
,
4269
4273
(
2015
).
20.
H.
Zhang
and
A.
Minnich
, “
The best nanoparticle size distribution for minimum thermal conductivity
,”
Sci. Rep.
5
,
8995
(
2015
).
21.
J.
Dong
,
F-h
Sun
,
H.
Tang
,
K.
Hayashi
,
H.
Li
,
P.-P.
Shang
,
Y.
Miyazaki
, and
J.-F.
Li
, “
Reducing lattice thermal conductivity of MnTe by Se alloying toward high thermoelectric performance
,”
ACS Appl. Mater. Interfaces
11
,
28221
28227
(
2019
).
22.
Y.
Nakamura
, “
Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity
,”
Sci. Technol. Adv. Mater.
19
,
31
43
(
2018
).
23.
S.
Sakane
,
T.
Ishibe
,
T.
Hinakawa
,
N.
Naruse
,
Y.
Mera
,
M.
Mahfuz Alam
,
K.
Sawano
, and
Y.
Nakamura
, “
High thermoelectric performance in high crystallinity epitaxial Si films containing silicide nanodots with low thermal conductivity
,”
Appl. Phys. Lett.
115
,
182104
(
2019
).
24.
M.
Isaiev
,
X.
Wang
,
K.
Termentzidis
, and
D.
Lacroix
, “
Thermal transport enhancement of hybrid nanocomposites; impact of confined water inside nanoporous silicon
,”
Appl. Phys. Lett.
117
,
033701
(
2020
).
25.
D. T.
Morelli
,
J. P.
Heremans
, and
G. A.
Slack
, “
Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors
,”
Phys. Rev. B
66
,
195304
(
2002
).
26.
A.
Jain
,
M.
Jamet
,
A.
Barski
,
T.
Devillers
,
I.-S.
Yu
,
C.
Porret
,
P.
Bayle-Guillemaud
,
V.
Favre-Nicolin
,
S.
Gambarelli
,
V.
Maurel
,
G.
Desfonds
,
J. F.
Jacquot
, and
S.
Tardif
, “
Structure and magnetism of Ge3Mn5 clusters
,”
J. Appl. Phys.
109
,
013911
(
2011
).
27.
A.
Minnich
and
G.
Chen
, “
Modified effective medium formulation for the thermal conductivity of nanocomposites
,”
Appl. Phys. Lett.
91
,
073105
(
2007
).
28.
V.
Jean
, “
Modélisation du transport de phonons dans les semi-conducteurs nanostructurés
,” Ph.D. thesis (
Université de Lorraine
,
2014
).
29.
D. G.
Cahill
, “
Thermal conductivity measurement from 30 to 750 K: The 3ω method
,”
Rev. Sci. Instrum.
61
,
802
808
(
1990
).
30.
J.
Paterson
,
D.
Singhal
,
D.
Tainoff
,
J.
Richard
, and
O.
Bourgeois
, “
Thermal conductivity and thermal boundary resistance of amorphous Al2O3 thin films on germanium and sapphire
,”
J. Appl. Phys.
127
,
245105
(
2020
).
31.
T.
Borca-Tasciuc
,
A. R.
Kumar
, and
G.
Chen
, “
Data reduction in 3ω method for thin-film thermal conductivity determination
,”
Rev. Sci. Instrum.
72
,
2139
2147
(
2001
).
32.
P. D.
Desai
, “
Thermodynamic properties of manganese and molybdenum
,”
J. Phys. Chem. Reference Data
16
,
91
108
(
1987
).
33.
J.
Alvarez-Quintana
,
J.
Rodríguez-Viejo
,
F. X.
Alvarez
, and
D.
Jou
, “
Thermal conductivity of thin single-crystalline germanium-on-insulator structures
,”
Int. J. Heat Mass Transfer
54
,
1959
1962
(
2011
).
34.
Z. H.
Wang
and
M. J.
Ni
, “
Thermal conductivity and its anisotropy research of germanium thin film
,”
Heat Mass Transfer
47
,
449
455
(
2011
).
35.
A.
Saltelli
,
M.
Ratto
,
T.
Andres
,
F.
Campolongo
,
J.
Cariboni
,
D.
Gatelli
,
M.
Saisana
, and
S.
Tarantola
,
Global Sensitivity Analysis. The Primer
(
John Wiley and Sons, Ltd
,
Chichester, UK
,
2008
), pp.
1
292
.
36.
Z.
Chen
and
C.
Dames
, “
Applied thermal measurements at the nanoscale
,” in
Lessons from Nanoscience: A Lecture Notes Series
(
World Scientific
,
2018
), Vol.
7
.
37.
M.
Asen-Palmer
,
K.
Bartkowski
,
E.
Gmelin
,
M.
Cardona
,
A. P.
Zhernov
,
A. V.
Inyushkin
,
A.
Taldenkov
,
V. I.
Ozhogin
,
K. M.
Itoh
, and
E. E.
Haller
, “
Thermal conductivity of germanium crystals with different isotopic compositions
,”
Phys. Rev. B
56
,
9431
9447
(
1997
).
38.
C.
Mangold
,
S.
Chen
,
G.
Barbalinardo
,
J.
Behler
,
P.
Pochet
,
K.
Termentzidis
,
Y.
Han
,
L.
Chaput
,
D.
Lacroix
, and
D.
Donadio
, “
Transferability of neural network potentials for varying stoichiometry: Phonons and thermal conductivity of MnxGey compounds
,”
J. Appl. Phys.
127
,
244901
(
2020
).
39.
D.
Lacroix
,
K.
Joulain
, and
D.
Lemonnier
, “
Monte Carlo transient phonon transport in silicon and germanium at nanoscales
,”
Phys. Rev. B
72
,
064305
(
2005
).
40.
V.
Jean
,
S.
Fumeron
,
K.
Termentzidis
,
S.
Tutashkonko
, and
D.
Lacroix
, “
Monte Carlo simulations of phonon transport in nanoporous silicon and germanium
,”
J. Appl. Phys.
115
,
024304
(
2014
).
41.
W.
Kim
and
A.
Majumdar
, “
Phonon scattering cross section of polydispersed spherical nanoparticles
,”
J. Appl. Phys.
99
,
084306
(
2006
).

Supplementary Material

You do not currently have access to this content.