In pursuit of understanding the mechanism of two-dimensional electron gas (2DEG), artificial heterostructures based on SrTiO3 have sparked a wealth of exciting experimental and theoretical results. However, to date, the physical origin of this phenomenon still remains controversial. In our endeavor to unravel the mystery, we have synthesized a series of LaTiO3+δ/SrTiO3 films by controlling growth temperature and oxygen pressure, respectively. X-ray absorption results identify the transition of Ti ions from Ti3+ to Ti4+. It is proved that electrical transport properties in the LaTiO3/SrTiO3 film are dominated by oxygen vacancies in SrTiO3. In addition, the metallic behavior observed in the amorphous LaTiO3/SrTiO3 film suggests contributions from growth-induced donor defects to 2DEG. Our work presents direct evidence of competing conduction mechanisms for the observed 2DEG at the LaTiO3/SrTiO3 interface and highlights the important role of oxygen diffusion from the substrate SrTiO3. Meanwhile, we emphasize the significance of LaTiO3 as an oxygen scale meter to investigate interfacial properties of oxide heterostructures.

1.
J.
Biscaras
,
N.
Bergeal
,
S.
Hurand
,
C.
Grossetete
,
A.
Rastogi
,
R. C.
Budhani
,
D.
LeBoeuf
,
C.
Proust
, and
J.
Lesueur
, “
Two-dimensional superconducting phase in LaTiO3/SrTiO3 heterostructures induced by high-mobility carrier doping
,”
Phys. Rev. Lett.
108
(
24
),
247004
(
2012
).
2.
H.
Kroemer
, “
Nobel lecture: Quasielectric fields and band offsets: Teaching electrons new tricks
,”
Rev. Mod. Phys.
73
(
3
),
783
793
(
2001
).
3.
A.
Ohtomo
and
H. Y.
Hwang
, “
A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface
,”
Nature
427
(
6973
),
423
426
(
2004
).
4.
S. A.
Chambers
,
L.
Qiao
,
T. C.
Droubay
,
T. C.
Kaspar
,
B. W.
Arey
, and
P. V.
Sushko
, “
Band alignment, built-in potential, and the absence of conductivity at the LaCrO3/SrTiO3 (001) heterojunction
,”
Phys. Rev. Lett.
107
(
20
),
206802
(
2011
).
5.
S.
Zhang
,
J.
Wang
,
S.
Wen
,
M.
Jiang
,
H.
Xiao
,
X.
Ding
,
N.
Wang
,
M.
Li
,
X.
Zu
,
S.
Li
,
C.
Yam
,
B.
Huang
, and
L.
Qiao
, “
Approaching charge separation efficiency to unity without charge recombination
,”
Phys. Rev. Lett.
126
(
17
),
176401
(
2021
).
6.
M.
Zhang
,
K.
Du
,
T.
Ren
,
H.
Tian
,
Z.
Zhang
,
H. Y.
Hwang
, and
Y.
Xie
, “
A termination-insensitive and robust electron gas at the heterointerface of two complex oxides
,”
Nat. Commun.
10
(
1
),
4026
(
2019
).
7.
P. D. C.
King
,
R. H.
He
,
T.
Eknapakul
,
P.
Buaphet
,
S. K.
Mo
,
Y.
Kaneko
,
S.
Harashima
,
Y.
Hikita
,
M. S.
Bahramy
,
C.
Bell
,
Z.
Hussain
,
Y.
Tokura
,
Z. X.
Shen
,
H. Y.
Hwang
,
F.
Baumberger
, and
W.
Meevasana
, “
Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin-orbit perovskite KTaO3
,”
Phys. Rev. Lett.
108
(
11
),
117602
(
2012
).
8.
Y.
Zhang
,
H.
Lu
,
L.
Xie
,
X.
Yan
,
T. R.
Paudel
,
J.
Kim
,
X.
Cheng
,
H.
Wang
,
C.
Heikes
,
L.
Li
,
M.
Xu
,
D. G.
Schlom
,
L.-Q.
Chen
,
R.
Wu
,
E. Y.
Tsymbal
,
A.
Gruverman
, and
X.
Pan
, “
Anisotropic polarization-induced conductance at a ferroelectric-insulator interface
,”
Nat. Nanotechnol.
13
(
12
),
1132
1136
(
2018
).
9.
S.
Gariglio
,
M.
Gabay
, and
J.-M.
Triscone
, “
Research update: Conductivity and beyond at the LaAlO3/SrTiO3 interface
,”
APL Mater.
4
,
060701
(
2016
).
10.
P. R.
Willmott
,
S. A.
Pauli
,
R.
Herger
,
C. M.
Schleputz
,
D.
Martoccia
,
B. D.
Patterson
,
B.
Delley
,
R.
Clarke
,
D.
Kumah
,
C.
Cionca
, and
Y.
Yacoby
, “
Structural basis for the conducting interface between LaAlO3 and SrTiO3
,”
Phys. Rev. Lett.
99
(
15
),
155502
(
2007
).
11.
A.
Kalabukhov
,
R.
Gunnarsson
,
J.
Börjesson
,
E.
Olsson
,
T.
Claeson
, and
D.
Winkler
, “
Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface
,”
Phys. Rev. B
75
(
12
),
121404
(
2007
).
12.
G.
Herranz
,
M.
Basletic
,
M.
Bibes
,
C.
Carretero
,
E.
Tafra
,
E.
Jacquet
,
K.
Bouzehouane
,
C.
Deranlot
,
A.
Hamzic
,
J. M.
Broto
,
A.
Barthelemy
, and
A.
Fert
, “
High mobility in LaAlO3/SrTiO3 heterostructures: Origin, dimensionality, and perspectives
,”
Phys. Rev. Lett.
98
(
21
),
216803
(
2007
).
13.
A.
Rastogi
,
A. K.
Kushwaha
,
T.
Shiyani
,
A.
Gangawar
, and
R. C.
Budhani
, “
Electrically tunable optical switching of a Mott insulator-band insulator interface
,”
Adv. Mater.
22
(
40
),
4448
4451
(
2010
).
14.
M. J.
Veit
,
R.
Arras
,
B. J.
Ramshaw
,
R.
Pentcheva
, and
Y.
Suzuki
, “
Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures
,”
Nat. Commun.
9
(
1
),
1458
(
2018
).
15.
B.
Keimer
,
D.
Casa
,
A.
Ivanov
,
J. W.
Lynn
,
M.
Zimmermann
,
J. P.
Hill
,
D.
Gibbs
,
Y.
Taguchi
, and
Y.
Tokura
, “
Spin dynamics and orbital state in LaTiO3
,”
Phys. Rev. Lett.
85
,
3946
(
2000
).
16.
S.
Okamoto
,
A. J.
Millis
, and
N. A.
Spaldin
, “
Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices
,”
Phys. Rev. Lett.
97
(
5
),
056802
(
2006
).
17.
R.
Pentcheva
and
W. E.
Pickett
, “
Correlation-driven charge order at the interface between a Mott and a band insulator
,”
Phys. Rev. Lett.
99
(
1
),
016802
(
2007
).
18.
J. S.
Kim
,
S. S. A.
Seo
,
M. F.
Chisholm
,
R. K.
Kremer
,
H. U.
Habermeier
,
B.
Keimer
, and
H. N.
Lee
, “
Nonlinear Hall effect and multichannel conduction in LaTiO3/SrTiO3 superlattices
,”
Phys. Rev. B
82
(
20
),
201407
(
2010
).
19.
T. T.
Zhang
,
C. Y.
Gu
,
Z. W.
Mao
,
X. F.
Chen
,
Z. B.
Gu
,
P.
Wang
,
Y. F.
Nie
, and
X. Q.
Pan
, “
Mott insulator to metal transition driven by oxygen incorporation in epitaxial LaTiO3 films
,”
Appl. Phys. Lett.
115
(
26
),
261604
(
2019
).
20.
B. I.
Edmondson
,
S.
Liu
,
S.
Lu
,
H.
Wu
,
A.
Posadas
,
D. J.
Smith
,
X. P. A.
Gao
,
A. A.
Demkov
, and
J. G.
Ekerdt
, “
Effect of SrTiO3 oxygen vacancies on the conductivity of LaTiO3/SrTiO3 heterostructures
,”
J. Appl. Phys.
124
(
18
),
185303
(
2018
).
21.
Y.
Tokura
,
Y.
Taguchi
,
Y.
Okada
,
Y.
Fujishima
,
T.
Arima
,
K.
Kumagai
, and
Y.
Iye
, “
Filling dependence of electronic properties on the verge of metal-Mott-insulator transition in Sr1-xLaxTiO3
,”
Phys. Rev. Lett.
70
(
14
),
2126
2129
(
1993
).
22.
Y.
Liang
,
Y.
Wang
,
L.
Liu
,
Q.
Guo
,
W.
Wang
,
H.
Yang
, and
J.
Guo
, “
Chemical intermixing at oxide heterointerfaces with polar discontinuity
,”
Appl. Phys. Lett.
112
(
23
),
231601
(
2018
).
23.
Y.
Cao
,
X.
Liu
,
M.
Kareev
,
D.
Choudhury
,
S.
Middey
,
D.
Meyers
,
J. W.
Kim
,
P. J.
Ryan
,
J. W.
Freeland
, and
J.
Chakhalian
, “
Engineered Mott ground state in a LaTiO(3+δ)/LaNiO3 heterostructure
,”
Nat. Commun.
7
,
10418
(
2016
).
24.
K. T.
Masashi Kawasaki
,
T.
Maeda
,
R.
Tsuchiya
,
M.
Shinohara
,
O.
Ishiyama
,
T.
Yonezawa
,
M.
Yoshimoto
, and
H.
Koinuma
, “
Atomic control of the SrTiO3 crystal surface
,”
Science
266
,
1540
(
1994
).
25.
P.
Scheiderer
,
M.
Schmitt
,
J.
Gabel
,
M.
Zapf
,
M.
Stübinger
,
P.
Schütz
,
L.
Dudy
,
C.
Schlueter
,
T. L.
Lee
,
M.
Sing
, and
R.
Claessen
, “
Tailoring materials for Mottronics: Excess oxygen doping of a prototypical Mott insulator
,”
Adv. Mater.
30
(
25
),
1706708
(
2018
).
26.
F.
Wen
,
Y.
Cao
,
X.
Liu
,
B.
Pal
,
S.
Middey
,
M.
Kareev
, and
J.
Chakhalian
, “
Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3
,”
Appl. Phys. Lett.
112
(
12
),
122405
(
2018
).
27.
S.
Havelia
,
K. R.
Balasubramaniam
,
S.
Spurgeon
,
F.
Cormack
, and
P. A.
Salvador
, “
Growth of La2Ti2O7 and LaTiO3 thin films using pulsed laser deposition
,”
J. Cryst. Growth
310
(
7–9
),
1985
1990
(
2008
).
28.
L.
Qiao
and
X.
Bi
, “
Direct observation of oxygen vacancy and its effect on the microstructure, electronic and transport properties of sputtered LaNiO3−δ films on Si substrates
,”
Thin Solid Films
519
(
2
),
943
946
(
2010
).
29.
V. V.
Mehta
,
M.
Liberati
,
F. J.
Wong
,
R. V.
Chopdekar
,
E.
Arenholz
, and
Y.
Suzuki
, “
Ferromagnetism in tetragonally distorted LaCoO3 thin films
,”
J. Appl. Phys.
105
(
7
),
07E503
(
2009
).
30.
R. A.
De Souza
, “
Oxygen diffusion in SrTiO3 and related perovskite oxides
,”
Adv. Funct. Mater.
25
(
40
),
6326
6342
(
2015
).
31.
A. S.
Disa
,
D. P.
Kumah
,
A.
Malashevich
,
H.
Chen
,
D. A.
Arena
,
E. D.
Specht
,
S.
Ismail-Beigi
,
F. J.
Walker
, and
C. H.
Ahn
, “
Orbital engineering in symmetry-breaking polar heterostructures
,”
Phys. Rev. Lett.
114
(
2
),
026801
(
2015
).
32.
G.
Zampieri
,
M.
Abbate
,
F.
Prado
,
A.
Caneiro
, and
E.
Morikawa
, “
XPS and XAS spectra of CaMnO3 and LaMnO3
,”
Physica B
320
,
51
(
2002
).
33.
C.
Yoshida
,
H.
Tamura
,
A.
Yoshida
,
Y.
Kataoka
,
N.
Fujimaki
, and
N.
Yokoyama
, “
Electric field effect in LaTiO3/SrTiO3 heterostructure
,”
Jpn. J. Appl. Phys., Part 1
35
,
5691
(
1996
).
34.
C.
He
,
T. D.
Sanders
,
M. T.
Gray
,
F. J.
Wong
,
V. V.
Mehta
, and
Y.
Suzuki
, “
Metal-insulator transitions in epitaxial LaVO3 and LaTiO3 films
,”
Phys. Rev. B
86
(
8
),
081401
(
2012
).
35.
M. H.
Li
,
H.
Li
,
Y. L.
Gan
,
H.
Xu
,
C. M.
Xiong
,
F. X.
Hu
,
J. R.
Sun
,
T.
Schmitt
,
V. N.
Strocov
,
Y. Z.
Chen
, and
B. G.
Shen
, “
Decoupling the conduction from redox reaction and electronic reconstruction at polar oxide interfaces
,”
Phys. Rev. Mater.
6
(
3
),
035004
(
2022
).
36.
Y. Z.
Chen
,
M.
Döbeli
,
E.
Pomjakushina
,
Y. L.
Gan
,
N.
Pryds
, and
T.
Lippert
, “
Scavenging of oxygen vacancies at modulation-doped oxide interfaces: Evidence from oxygen isotope tracing
,”
Phys. Rev. Mater.
1
(
5
),
052002
(
2017
).
37.
Y.
Chen
,
R. J.
Green
,
R.
Sutarto
,
F.
He
,
S.
Linderoth
,
G. A.
Sawatzky
, and
N.
Pryds
, “
Tuning the two-dimensional electron liquid at oxide interfaces by buffer-layer-engineered redox reactions
,”
Nano Lett.
17
(
11
),
7062
7066
(
2017
).
38.
S.
Das
,
A.
Rastogi
,
L.
Wu
,
J.-C.
Zheng
,
Z.
Hossain
,
Y.
Zhu
, and
R. C.
Budhani
, “
Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin-orbit interactions
,”
Phys. Rev. B
90
(
8
),
081107
(
2014
).
39.
J.
Biscaras
,
N.
Bergeal
,
A.
Kushwaha
,
T.
Wolf
,
A.
Rastogi
,
R. C.
Budhani
, and
J.
Lesueur
, “
Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3
,”
Nat. Commun.
1
,
89
(
2010
).
40.
S. S.
Seo
,
W. S.
Choi
,
H. N.
Lee
,
L.
Yu
,
K. W.
Kim
,
C.
Bernhard
, and
T. W.
Noh
, “
Optical study of the free-carrier response of LaTiO3/SrTiO3 superlattices
,”
Phys. Rev. Lett.
99
(
26
),
266801
(
2007
).
41.
Z. Q.
Liu
,
C. J.
Li
,
W. M.
,
X. H.
Huang
,
Z.
Huang
,
S. W.
Zeng
,
X. P.
Qiu
,
L. S.
Huang
,
A.
Annadi
,
J. S.
Chen
,
J. M. D.
Coey
,
T.
Venkatesan
, and
Ariando
, “
Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: The role of oxygen vacancies and electronic reconstruction
,”
Phys. Rev. X
3
(
2
),
021010
(
2013
).
42.
F. J.
Wong
,
S.-H.
Baek
,
R. V.
Chopdekar
,
V. V.
Mehta
,
H.-W.
Jang
,
C.-B.
Eom
, and
Y.
Suzuki
, “
Metallicity in LaTiO3 thin films induced by lattice deformation
,”
Phys. Rev. B
81
(
16
),
161101
(
2010
).
43.
K. J.
Kormondy
,
A. B.
Posadas
,
T. Q.
Ngo
,
S.
Lu
,
N.
Goble
,
J.
Jordan-Sweet
,
X. P. A.
Gao
,
D. J.
Smith
,
M. R.
McCartney
,
J. G.
Ekerdt
, and
A. A.
Demkov
, “
Quasi-two-dimensional electron gas at the epitaxial alumina/SrTiO3 interface: Control of oxygen vacancies
,”
J. Appl. Phys.
117
,
095303
(
2015
).
44.
Y.
Chen
,
N.
Pryds
,
J. E.
Kleibeuker
,
G.
Koster
,
J.
Sun
,
E.
Stamate
,
B.
Shen
,
G.
Rijnders
, and
S.
Linderoth
, “
Metallic and insulating interfaces of amorphous SrTiO3-based oxide heterostructures
,”
Nano Lett.
11
(
9
),
3774
3778
(
2011
).
You do not currently have access to this content.