In this work, we explore the electron scattering characteristics at interfaces between normal metals and topological semimetals in bulk as well as in thin film structures. We consider Cu/Ta and CoSi/Ta as representative metal/metal and topological semimetal/metal interface structures, respectively. For bulk interface structures, we find that metal/topological semimetal interfaces have roughly 20× higher interfacial resistivity than normal metal/metal interfaces primarily due to the low electronic density of states, the Fermi level in bulk topological semimetals. For thin films, we find that normal metal/metal interfacial resistivity shows a weak dependence on film thickness and is generally close to the corresponding bulk value. Interfaces between surface-conduction dominated topological semimetals, such as CoSi and normal metals in thin films, however, show decreasing interfacial resistivity with decreasing film thickness. This apparent reduction in interface resistivity originates from the surface-dominated transport, where the total transmission across the interface varies little with reduced film thickness, yielding an effective increase in interface conductivity at smaller dimensions. These results suggest that topological semimetals may be attractive candidates for next-generation interconnect materials with critically small dimensions where interfaces with other metals are ubiquitous.

1.
K.
Sankaran
,
S.
Clima
,
M.
Mees
, and
G.
Pourtois
,
ECS J. Solid State Sci. Technol.
4
,
N3127
(
2015
).
2.
X.
Zhang
,
H.
Huang
,
R.
Patlolla
,
F.
Mont
,
X.
Lin
,
M.
Raymond
,
C.
Labelle
,
E.
Ryan
,
D.
Canaperi
,
T.
Standaert
et al,
IEEE IITC
,
2017
.
3.
C.-K.
Hu
,
J.
Kelly
,
J.-C.
Chen
,
H.
Huang
,
Y.
Ostrovski
,
R.
Patlolla
,
B.
Peethala
,
P.
Adusumilli
,
T.
Spooner
,
L.
Gignac
et al, in
IEEE International Interconnect Technology Conference
(
IEEE
,
2017
), p.
1
.
4.
N.
Lanzillo
,
J. Appl. Phys.
121
,
175104
(
2017
).
5.
N.
Lanzillo
,
T.
Standaert
, and
C.
Lavoie
,
J. Appl. Phys.
121
,
194301
(
2017
).
6.
S.
Dutta
,
S.
Beyne
,
A.
Gupta
,
S.
Kundu
,
S.
Van Elshocht
,
H.
Bender
,
G.
Jamieson
,
W.
Vandervorst
,
J.
Bommels
,
C.
Wilson
et al,
IEEE Electron Device Lett.
39
,
731
(
2018
).
7.
T.
Nogami
,
X.
Zhang
,
J.
Kelly
,
B.
Briggs
,
H.
You
,
R.
Patlolla
,
H.
Huang
,
P.
McLaughlin
,
J.
Lee
,
H.
Shobha
et al, in
Symposium on VLSI Technology
(
IEEE
,
2017
), pp.
T148
T149
.
8.
P.
Bhosale
,
S.
Parikh
,
R.
Shaviv
,
N.
Lanzillo
,
G.
How
,
M.
Stolfi
,
L.
Jiang
,
W.
Du
,
R.
Tao
,
G.
Lam
et al, in
Proceedings of IEEE International Interconnect Technology Conference
(
IEEE
,
2019
).
9.
C.
Penny
, in
Proceedings of IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2022
), pp.
12.1.1
12.1.4
.
10.
K.
Motoyama
,
D.
Metzler
,
C.
Park
,
N.
Lanzillo
,
L.
Zou
,
S.
Ghosh
, and
K.
Choi
, in
Proceedings of IEEE International Interconnect Technology Conference (IITC)
(
IEEE
,
2023
), pp.
1
3
.
11.
M. Z.
Hasan
,
G.
Chang
,
I.
Belopolski
,
G.
Bian
,
S.-Y.
Xu
, and
J.-X.
Yin
,
Nat. Rev. Mater.
6
,
784
–803 (
2021
).
12.
S.
Jia
,
S.-Y.
Xu
, and
M.
Hasan
,
Nat. Mater.
15
,
1140
(
2016
).
13.
N.
Armitage
,
E.
Mele
, and
A.
Vishwanath
,
Rev. Mod. Phys.
90
,
015001
(
2018
).
14.
N.
Schoter
,
D.
Pei
,
M.
Vergniory
,
Y.
Sun
,
K.
Manna
,
F.
de Juan
,
J.
Krieger
,
V.
Suss
,
M.
Schmidt
,
P.
Dudin
et al,
Nat. Phys.
15
,
759
(
2019
).
15.
D.
Sanchez
,
I.
Belopolski
,
T.
Cochran
,
X.
Xu
,
J.-X.
Yin
,
G.
Chang
,
W.
Xie
,
K.
Manna
,
V.
Sub
,
C.-Y.
Huang
et al,
Nature
567
,
500
(
2019
).
16.
Z.
Rao
,
H.
Li
,
T.
Zhang
,
S.
Tian
,
C.
Li
,
B.
Fu
,
C.
Tang
,
L.
Wang
,
Z.
Li
,
W.
Fan
et al,
Nature
567
,
496
(
2019
).
17.
G.
Chang
,
S.-Y.
Xu
,
B.
Wieder
,
D.
Sanchez
,
S.-M.
Huang
,
I.
Belopolski
,
T.-R.
Chang
,
S.
Zhang
,
A.
Bansil
,
H.
Lin
et al,
Phys. Rev. Lett.
119
,
206401
(
2017
).
18.
D.
Josell
,
S.
Brongersma
, and
Z.
Tokei
,
Annu. Rev. Mater. Res.
39
,
231
(
2009
).
19.
W.
Steinhogl
,
G.
Schindler
,
G.
Steinlesberger
, and
M.
Engelhardt
,
Phys. Rev. B
66
,
075414
(
2002
).
20.
W.
Steinhogl
,
G.
Schindler
,
M.
Steinlesberger
,
G.
Traving
, and
M.
Engelhardt
,
J. Appl. Phys.
97
,
023706
(
2005
).
21.
T.
Zhou
and
D.
Gall
,
Phys. Rev. B
97
,
165406
(
2018
).
22.
R.
Smith
,
E.
Ryan
,
C.
Hu
,
K.
Motoyama
,
N.
Lanzillo
,
D.
Metzler
,
L.
Jiang
,
J.
Demarest
,
R.
Quon
,
L.
Gignac
et al,
AIP Adv.
9
,
025015
(
2019
).
23.
J.
Roberts
,
A.
Kaushik
, and
J.
Clarke
, in
IEEE International Interconnect Technology Conference
(
IEEE
,
2015
), p.
341
.
24.
C.-T.
Chen
,
U.
Bajpai
,
N.
Lanzillo
,
C.-H.
Hsu
,
H.
Lin
, and
G.
Liang
, in
Proceedings of International Electron Devices Meeting (IEDM)
(
IEEE
,
2020
), p.
32.4
.
25.
N. A.
Lanzillo
,
U.
Bajpai
,
I.
Garate
, and
C.-T.
Chen
,
Phys. Rev. Appl.
18
,
034053
(
2022
).
26.
S.
Kumar
,
Y.-H.
Lu
,
L.
Sheng
,
N.
Lanzillo
,
T.-R.
Chang
,
G.
Liang
,
R.
Sundararaman
,
H.
Lin
, and
C.-T.
Chen
, arXiv:2211.10426 (
2022
).
27.
S.-W.
Lien
,
I.
Garate
,
U.
Bajpai
,
C.-Y.
Huang
,
C.-H.
Hsu
,
Y.-H.
TU
,
N.
Lanzillo
,
A.
Bansil
,
T.-R.
Chang
,
G.
Liang
et al,
npj Quantum Mater.
8
,
3
(
2023
).
28.
N.
Lanzillo
,
O.
Restrepo
,
P.
Bhosale
,
E.
Cruz-Silva
,
C.-C.
Yang
,
B.
Kim
,
T.
Spooner
,
T.
Standaert
,
C.
Child
,
G.
Bonilla
et al,
Appl. Phys. Lett.
112
,
163107
(
2018
).
29.
N.
Lanzillo
,
B.
Briggs
,
R.
Robison
,
T.
Standaert
, and
C.
Lavoie
,
Comput. Mater. Sci.
158
,
398
(
2019
).
30.
N.
Lanzillo
,
R.
Sengupta
, and
D.
Dechene
, in
Comprehensive BEOL Performance Assessment: Interconnects Optimized for Signal Routing and Power Delivery in Advanced CMOS Technology Nodes
(
IEEE
,
2020
).
31.
N.
Lanzillo
,
K.
Motoyama
,
H.
Huang
,
R.
Robison
, and
T.
Spooner
,
Appl. Phys. Lett.
116
,
164103
(
2020
).
32.
D.
Edelstein
,
J.
Heidenreich
,
R.
Goldblatt
,
W.
Cote
,
C.
Uzoh
,
N.
Lustig
,
P.
Roper
,
T.
McDevitt
,
W.
Motsiff
,
A.
Simon
et al, in
International Electron Device Meeting Technical Digest
(
IEEE
,
1997
), pp.
773
776
.
33.
H.
Kim
,
C.
Detavenier
,
O.
van der Straten
,
S. M.
Rossnagel
,
A. J.
Kellock
, and
D.-G.
Park
,
J. Appl. Phys.
98
,
014308
(
2005
).
34.
L.
Leu
,
D.
Norton
,
L.
McElwee-White
, and
T.
Anderson
,
Appl. Phys. Lett.
92
,
111917
(
2008
).
35.
C.-C.
Yang
,
T.
Spooner
,
P.
McLaughlin
,
R.
Quon
,
T.
Standaert
, and
D.
Edelstein
,
IEEE Electron Device Lett.
38
,
115
(
2017
).
36.
N.
Lanzillo
,
C.-C.
Yang
,
K.
Motoyama
,
H.
Huang
,
K.
Cheng
,
J.
Maniscalco
,
O.
Van Der Straten
,
C.
Penny
,
T.
Standaert
, and
K.
Choi
,
IEEE Electron Device Lett.
40
,
1804
(
2019
).
37.
T.
Zho
,
N.
Lanzillo
,
P.
Bhosale
,
D.
Gall
, and
R.
Quon
,
AIP Adv.
8
,
055127
(
2018
).
38.
C.-C.
Yang
,
F.
Chen
,
B.
Li
, and
D.
Edelstein
,
IEEE Electron Device Lett.
31
,
347
(
2010
).
39.
See https://www.synopsys.com/silicon/quantumatk.html for QuantumATK version 2017.12, Synopsys QuantumATK.
40.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
41.
S.
Jones
,
A.
Sanchez-Soares
,
J.
Plombon
,
A.
Kaushik
,
R.
Nagle
,
J.
Clarke
, and
J.
Greer
,
Phys. Rev. B
92
,
115413
(
2015
).
42.
G.
Hegde
,
R.
Bowen
, and
M.
Rodder
,
Appl. Phys. Lett.
109
,
193106
(
2016
).
43.
O.
Restrepo
,
Q.
Gao
,
S.
Pandey
,
E.
Cruz-Silva
, and
E.
Bazizi
, in
Proceeding of International Conference on Simulation Semiconductor Processes Devices (SISPAD)
(
IEEE
,
2018
), pp.
67
70
.
44.
H.
Hang
and
A.-P.
Jauho
,
Quantum Kinetics in Transport and Optics of Semiconductors
(
Springer-Verlag
,
2008
).
45.
Y.
Zhou
,
S.
Sreekala
,
P.
Ajayan
, and
S.
Nayak
,
J. Phys.: Condens. Matter
20
,
095209
(
2008
).
46.
N.
Kharche
,
S.
Manjari
,
Y.
Zhou
,
R.
Geer
, and
S.
Nayak
,
J. Phys: Condens. Matter
23
,
085501
(
2011
).
47.
A.
Sanchez-Soares
,
S.
Jones
,
J.
Plombon
,
A.
Kaushik
,
R.
Nagle
,
J.
Clarke
, and
J.
Greer
,
Phys. Rev. B
94
,
155404
(
2016
).
48.
B.
Yang
and
N.
Nagaosa
,
Nat. Commun.
5
,
4898
(
2014
).
49.
Z.
Wang
,
H.
Weng
,
Q.
Wu
,
X.
Dai
, and
Z.
Fang
,
Phys. Rev. B
88
,
125427
(
2013
).
You do not currently have access to this content.