In this work, we propose combining a low work function anode metal and junction barrier Schottky structure to simultaneously achieve low turn-on voltage (Von) and high breakdown voltage (BV), which alleviates the dilemma that high BV requires high Schottky barrier height (SBH) and high Von. Molybdenum (Mo) is used to serve as the anode metal to reduce the SBH and facilitate fast turn-on to achieve a low Von. To resolve the low SBH related low BV issue, a p-NiO/n-Ga2O3-based heterojunction structure is used to enhance β-Ga2O3 sidewall depletion during the reverse state to improve the BV. With such a design, a low Von = 0.64 V(@1A/cm2) and a high BV = 2.34 kV as well as a specific on-resistance (Ron,sp) of 5.3 mΩ cm2 are demonstrated on a 10 μm-drift layer with a doping concentration of 1.5 × 1016 cm−3. β-Ga2O3 JBS diodes with low Von = 0.64 V and a power figure of merit of 1.03 GW/cm2 show great potential for future high-voltage and high-efficiency power electronics.

1.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal beta-Ga2O3 (010) substrates
,”
Appl. Phys. Lett
100
,
013504
(
2012
).
2.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev
5
,
011301
(
2018
).
3.
C.
Wang
,
J.
Zhang
,
S.
Xu
,
C.
Zhang
,
Q.
Feng
,
Y.
Zhang
,
N.
Jing
,
S.
Zhao
,
H.
Zhou
, and
Y.
Hao
, “
Progress in state-of-the-art technologies of Ga2O3 devices
,”
J. Phys. D
54
,
243001
(
2021
).
4.
Y.
Zhang
,
F.
Udrea
, and
H.
Wang
, “
Multidimensional device architectures for efficient power electronics
,”
Nat. Electron.
5
,
723
734
(
2022
).
5.
H.
Zhou
,
J.
Zhang
,
C.
Zhang
,
Q.
Feng
,
S.
Zhao
,
P.
Ma
, and
Y.
Hao
, “
A review of the most recent progresses of state-of-art gallium oxide power devices
,”
J. Semicond.
40
(
1
),
011803
(
2019
).
6.
M.
Higashiwaki
and
G. H.
Jessen
, “
Guest Editorial: The dawn of gallium oxide microelectronics
,”
Appl. Phys. Lett.
112
(
6
),
060401
(
2018
).
7.
S.
Krishnamoorthy
,
Z.
Xia
,
S.
Bajaj
,
M.
Brenner
, and
S.
Rajan
, “
Delta-doped β-gallium oxide field-effect transistor
,”
Appl. Phys. Express
10
,
051102
(
2017
).
8.
H.
Murakami
,
K.
Nomura
,
K.
Goto
,
K.
Sasaki
,
K.
Kawara
,
Q. T.
Thieu
,
R.
Togashi
,
Y.
Kumagai
,
M.
Higashiwaki
,
A.
Kuramata
,
S.
Yamakoshi
,
B.
Monemar
, and
A.
Koukitu
, “
Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy
,”
Appl. Phys. Express
8
,
015503
(
2015
).
9.
M. J.
Tadjer
,
M. A.
Mastro
,
N. A.
Mahadik
,
M.
Currie
,
V. D.
Wheeler
,
J. A.
Freitas
,
J. D.
Greenlee
,
J. K.
Hite
,
K. D.
Hobart
,
C. R.
Eddy
, and
F. J.
Kub
, “
Structural, optical, and electrical characterization of monoclinic β-Ga2O3 grown by MOVPE on sapphire substrates
,”
J. Electron. Mater.
45
,
2031
2037
(
2016
).
10.
J.
Zhang
,
P.
Dong
,
K.
Dang
,
Y.
Zhang
,
Q.
Yan
,
H.
Xiang
,
J.
Su
,
Z.
Liu
,
M.
Si
,
J.
Gao
,
M.
Kong
,
H.
Zhou
, and
Y.
Hao
, “
Ultra-wide bandgap semiconductor Ga2O3 power diodes
,”
Nat. Commun.
13
,
3900
(
2022
).
11.
J. S.
Li
,
C. C.
Chiang
,
X.
Xia
,
H. H.
Wan
,
F.
Ren
, and
S. J.
Pearton
, “
Effect of drift layer doping and NiO parameters in achieving 8.9 kV breakdown in 100 μm diameter and 4 kV/4 A in 1 mm diameter NiO/β-Ga2O3 rectifiers
,”
J. Vac. Sci. Technol.
41
(
4
),
043404
(
2023
).
12.
A. J.
Green
,
K. D.
Chabak
,
E. R.
Heller
,
R. C.
Fitch
,
M.
Baldini
,
A.
Fiedler
,
K.
Irmscher
,
G.
Wagner
,
Z.
Galazka
,
S. E.
Tetlak
,
A.
Crespo
,
K.
Leedy
, and
G. H.
Jessen
, “
3.8 MV/cm breakdown strength of MOVPE-grown Sn-doped Ga2O3 MOSFETs
,”
IEEE Electron Device Lett.
37
,
902
905
(
2016
).
13.
C.
Wang
,
H.
Zhou
,
J.
Zhang
,
W.
Mu
,
J.
Wei
,
Z.
Jia
,
X.
Zheng
,
X.
Luo
,
X.
Tao
, and
Y.
Hao
, “
Hysteresis-free and μs-switching of D/E-modes Ga2O3 hetero-junction FETs with the BV2/Ron,sp of 0.74/0.28 GW/cm2
,”
Appl. Phys. Lett.
120
,
112101
(
2022
).
14.
A.
Bhattacharyya
,
S.
Roy
,
P.
Ranga
,
C.
Peterson
, and
S.
Krishnamoorthy
, “
High-mobility tri-gate β-Ga2O3 MESFETs with a power figure of merit over 0.9 GW/cm2
,”
IEEE Electron Device Lett.
43
(
10
),
1637
1640
(
2022
).
15.
S.
Sharma
,
L.
Meng
,
A. U.
Bhuiyan
,
Z.
Feng
,
D.
Eason
,
H.
Zhao
, and
U.
Singisetti
, “
Vacuum annealed β-Ga2O3 recess channel MOSFETs with 8.56 kV breakdown voltage
,”
IEEE Electron Device Lett.
43
,
2029
(
2022
).
16.
K. D.
Chabak
,
J. P.
Mccandless
,
N. A.
Moser
,
A. J.
Green
,
K.
Mahalingam
,
A.
Crespo
,
N.
Hendricks
,
B. M.
Howe
,
S. E.
Tetlak
,
K.
Leedy
,
R. C.
Fitch
,
D.
Wakimoto
,
K.
Sasaki
,
A.
Kuramata
, and
G. H.
Jessen
, “
Recessed-gate enhancement-mode β-Ga2O3 MOSFETs
,”
IEEE Electron Device Lett.
39
(
1
),
67
70
(
2018
).
17.
M. H.
Wong
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Current aperture vertical β-Ga2O3 MOSFETs fabricated by N- and Si-ion implantation doping
,”
IEEE Electron Device Lett.
40
(
3
),
431
434
(
2019
).
18.
N. K.
Kalarickal
,
Z.
Xia
,
H. L.
Huang
,
W.
Moore
,
Y.
Liu
,
M.
Brenner
,
J.
Hwang
, and
S.
Rajan
, “
β-(Al0.18Ga0.82)2O3/Ga2O3 double heterojunction transistor with average field of 5.5 MV/cm
,”
IEEE Electron Device Lett.
42
(
6
),
899
902
(
2021
).
19.
H.
Gong
,
F.
Zhou
,
X.
Yu
,
W.
Xu
,
F.
Ren
,
S.
Gu
,
H.
Lu
,
J.
Ye
, and
R.
Zhang
, “
70-μm-body Ga2O3 Schottky barrier diode with 1.48 K/W thermal resistance, 59 A surge current and 98.9% conversion efficiency
,”
IEEE Electron Device Lett.
43
(
5
),
773
776
(
2022
).
20.
F.
Wilhelmi
,
Y.
Komatsu
,
S.
Yamaguchi
,
Y.
Uchida
,
T.
Kase
,
S.
Kunori
, and
A.
Lindemann
, “
Switching properties of 600 V Ga2O3 diodes with different chip sizes and thicknesses
,”
IEEE Trans. Power Electron.
38
(
7
),
8406
8418
(
2023
).
21.
B.
Wang
,
M.
Xiao
,
J.
Knoll
,
C.
Buttay
,
K.
Sasaki
,
G.-Q.
Lu
,
C.
Dimarino
, and
Y.
Zhang
, “
Low thermal resistance (0.5 K/W) Ga2O3 Schottky rectifiers with double-side packaging
,”
IEEE Electron Device Lett.
42
(
8
),
1132
1135
(
2021
).
22.
M.
Xiao
,
B.
Wang
,
J.
Liu
,
R.
Zhang
,
Z.
Zhang
,
C.
Ding
,
S.
Lu
,
K.
Sasaki
,
G.-Q.
Lu
,
C.
Buttay
, and
Y.
Zhang
, “
Packaged Ga2O3 Schottky rectifiers with over 60-A surge current capability
,”
IEEE Trans. Power Electron.
36
(
8
),
8565
8569
(
2021
).
23.
K.
Sasaki
,
D.
Wakimoto
,
Q. T.
Thieu
,
Y.
Koishikawa
,
A.
Kuramata
,
M.
Higashiwaki
, and
S.
Yamakoshi
, “
First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes
,”
IEEE Electron Device Lett.
38
(
6
),
783
785
(
2017
).
24.
W.
Li
,
Z.
Hu
,
K.
Nomoto
,
R.
Jinno
,
Z.
Zhang
,
T. Q.
Tu
,
K.
Sasaki
,
A.
Kuramata
,
D.
Jena
, and
H. G.
Xing
, “
2.44 kV Ga2O3 vertical trench Schottky barrier diodes with very low reverse leakage current
,” in
IEEE International Electron Devices Meeting (IEDM)
,
2018
.
25.
Z.
Hu
,
H.
Zhou
,
Q.
Feng
,
J.
Zhang
,
C.
Zhang
,
K.
Dang
,
Y.
Cai
,
Z.
Feng
,
Y.
Gao
,
X.
Kang
, and
Y.
Hao
, “
Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2
,”
IEEE Electron Device Lett.
39
(
10
),
1
1567
(
2018
).
26.
X.
Lu
,
X.
Zhou
,
H.
Jiang
,
K. W.
Ng
,
Z.
Chen
,
Y.
Pei
,
K. M.
Lau
, and
G.
Wang
, “
1-kV sputtered p-NiO/n-Ga2O3 heterojunction diodes with an ultra-low leakage current below 1 μA/cm2
,”
IEEE Electron Device Lett.
41
(
3
),
449
452
(
2020
).
27.
W.
Guo
,
Z.
Han
,
X.
Zhao
,
G.
Xu
, and
S.
Long
, “
Large-area β-Ga2O3 Schottky barrier diode and its application in DC–DC converters
,”
J. Semicond.
44
(
7
),
072805
(
2023
).
28.
T.
Han
,
Y.
Wang
,
Y.
Lv
,
S.
Dun
,
H.
Liu
,
A.
Bu
, and
Z.
Feng
, “
2.83-kV double-layered NiO/β-Ga2O3 vertical p-n heterojunction diode with a power figure-of-merit of 5.98 GW/cm2
,”
J. Semicond.
44
(
7
),
072802
(
2023
).
29.
Q.
He
,
W.
Hao
,
X.
Zhou
,
X.
Zhao
,
G.
Xu
, and
S.
Long
, “
Over 1 GW/cm2 vertical Ga2O3 Schottky barrier diodes without edge termination
,”
IEEE Electron Device Lett.
43
(
2
),
264
267
(
2022
).
30.
C.-H.
Lin
,
Y.
Yuda
,
M. H.
Wong
,
M.
Sato
,
N.
Takekawa
,
K.
Konishi
,
T.
Watahiki
,
M.
Yamamuka
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation
,”
IEEE Electron Device Lett.
40
(
9
),
1487
1490
(
2019
).
31.
H.
Zhou
,
Q.
Yan
,
J.
Zhang
,
Y.
Lv
,
Z.
Liu
,
Y.
Zhang
,
K.
Dang
,
P.
Dong
,
Z.
Feng
,
Q.
Feng
,
J.
Ning
,
C.
Zhang
,
P.
Ma
, and
Y.
Hao
, “
High-performance vertical β-Ga2O3 Schottky barrier diode with implanted edge termination
,”
IEEE Electron Device Lett.
40
(
11
),
1788
1791
(
2019
).
32.
T.
Zhang
,
J.
Zhang
,
H.
Zhou
,
T.
Chen
,
K.
Zhang
,
Z.
Hu
,
Z.
Bian
,
K.
Dang
,
Y.
Wang
,
L.
Zhang
,
J.
Ning
,
P.
Ma
, and
Y.
Hao
, “
A 1.9 kV/2.61 m·cm2 lateral GaN Schottky barrier diode on silicon substrate with tungsten anode and low turn-on voltage of 0.35 V
,”
IEEE Electron Device Lett.
39
(
10
),
1
1551
(
2018
).
33.
P.
Dong
,
J.
Zhang
,
Q.
Yan
,
Z.
Liu
,
P.
Ma
,
H.
Zhou
, and
Y.
Hao
, “
6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV 2/Ron,sp performance exceeding 1D unipolar limit of GaN and SiC
,”
IEEE Electron Device Lett.
43
(
5
),
765
768
(
2022
).
34.
Y.
Lv
,
Y.
Wang
,
X.
Fu
,
S.
Dun
,
Z.
Sun
,
H.
Liu
,
X.
Zhou
,
X.
Song
,
K.
Dang
,
S.
Liang
,
J.
Zhang
,
H.
Zhou
,
Z.
Feng
,
S.
Cai
, and
Y.
Hao
, “
Demonstration of β-Ga2O3 junction barrier Schottky diodes with a Baliga's figure of merit of 0.85 GW/cm2 or a 5A/700 V handling capabilities
,”
IEEE Trans. Power Electron.
36
(
6
),
6179
6182
(
2021
).
35.
H.
Gong
,
X.
Yu
,
Y.
Xu
,
X.
Chen
,
Y.
Kuang
,
Y.
Lv
,
Y.
Yang
,
F.
Ren
,
Z.
Feng
,
S.
Gu
,
Y.
Zheng
,
R.
Zhang
, and
J.
Ye
, “
β-Ga2O3 vertical heterojunction barrier Schottky diodes terminated with p-NiO field limiting rings
,”
Appl. Phys. Lett.
118
(
20
),
202102
(
2021
).
36.
Q.
Yan
,
H.
Gong
,
J.
Zhang
,
J.
Ye
,
H.
Zhou
,
Z.
Liu
,
S.
Xu
,
C.
Wang
,
Z.
Hu
,
Q.
Feng
,
J.
Ning
,
C.
Zhang
,
P.
Ma
,
R.
Zhang
, and
Y.
Hao
, “
β-Ga2O3 hetero-junction barrier Schottky diode with reverse leakage current modulation and BV2/Ron,sp value of 0.93 GW/cm2
,”
Appl. Phys. Lett
118
(
12
),
122102
(
2021
).
37.
Z.
Hu
,
Y.
Lv
,
C.
Zhao
,
Q.
Feng
,
Z.
Feng
,
K.
Dang
,
X.
Tian
,
Y.
Zhang
,
J.
Ning
,
H.
Zhou
,
X.
Kang
,
J.
Zhang
, and
Y.
Hao
, “
Beveled fluoride plasma treatment for vertical β-Ga2O3 Schottky barrier diode with high reverse blocking voltage and low turn-on voltage
,”
IEEE Electron Device Lett.
41
(
3
),
441
444
(
2020
).
38.
N. S.
Hendricks
,
E.
Farzana
,
A. E.
Islam
,
K. D.
Leedy
,
K. J.
Liddy
,
J.
Williams
,
D. M.
Dryden
,
A. M.
Adams
,
J. S.
Speck
,
K. D.
Chabak
, and
A. J.
Green
, “
Vertical metal–dielectric–semiconductor diode on (001) β-Ga2O3 with high-κ TiO2 interlayer exhibiting reduced turn-on voltage and leakage current and improved breakdown
,”
Appl. Phys. Express
16
,
071002
(
2023
).
39.
H.
Kim
, “
Control and understanding of metal contacts to β-Ga2O3 single crystals: A review
,”
SN Appl. Sci.
4
,
27
(
2022
).
40.
Y.
Wei
,
J.
Lu
,
Z.
Jiang
,
K.
Yang
,
J.
Wei
,
L.
Hao
,
X.
Peng
, and
X.
Luo
, “
Low turn-on voltage and high breakdown voltage β-Ga2O3 diode with fin channel and Ohmic contact anode
,”
IEEE Trans. Electron Devices
70
(
1
),
196
203
(
2023
).
41.
W.
Hao
,
F.
Wu
,
W.
Li
,
G.
Xu
,
X.
Xie
,
K.
Zhou
,
W.
Guo
,
X.
Zhou
,
Q.
He
,
X.
Zhao
,
S.
Yang
, and
S.
Long
, “
High-performance vertical β-Ga2O3 Schottky barrier diodes featuring P-NiO JTE with adjustable conductivity
,” in
International Electron Devices Meeting (IEDM)
, San Francisco, CA (
IEEE
,
2022
).
42.
S.
Roy
,
A.
Bhattacharyya
,
C.
Peterson
, and
S.
Krishnamoorthy
, “
2.1 kV (001)-β-Ga2O3 vertical Schottky barrier diode with high-k oxide field plate
,”
Appl. Phys. Lett
122
(
15
),
152101
(
2023
).
43.
B.
Wang
,
M.
Xiao
,
J.
Spencer
,
Y.
Qin
,
K.
Sasaki
,
M. J.
Tadjer
, and
Y.
Zhang
, “
2.5 kV vertical Ga2O3 Schottky rectifier with graded junction termination extension
,”
IEEE Electron Device Lett.
44
(
2
),
221
224
(
2023
).
44.
S.
Roy
,
A.
Bhattacharyya
,
P.
Ranga
,
H.
Splawn
,
J.
Leach
, and
S.
Krishnamoorthy
, “
High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with Baliga's figure of merit over 1 GW/cm2
,”
IEEE Electron Device Lett.
42
(
8
),
1140
1143
(
2021
).
45.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
, and
H. G.
Xing
, “
Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron,sp of up to 0.95 GW/cm2
,”
IEEE Electron Device Lett.
41
(
1
),
107
110
(
2020
).
46.
E.
Farzana
,
S.
Roy
,
N.
Hendricks
,
S.
Krishnamoorthy
, and
J.
Speck
, “
Vertical PtOx/Pt/β-Ga2O3 Schottky diodes with high permittivity dielectric field plate for low leakage and high breakdown voltage
,”
Appl. Phys. Lett.
123
(
19
),
192102
(
2023
).
47.
S.
Roy
,
A.
Bhattacharyya
,
C.
Peterson
, and
S.
Krishnamoorthy
, “
β-Ga2O3 lateral high-permittivity dielectric superjunction Schottky barrier diode with 1.34 GW/cm2 power figure of merit
,”
IEEE Electron Device Lett.
43
(
12
),
2037
2040
(
2022
).
You do not currently have access to this content.