The transparent conducting oxide SnO2 is a wide bandgap semiconductor that is easily n-type doped and widely used in various electronic and optoelectronic applications. Experimental reports of the electron mobility of this material vary widely depending on the growth conditions and doping concentrations. In this work, we calculate the electron mobility of SnO2 from first principles to examine the temperature and doping concentration dependence and to elucidate the scattering mechanisms that limit transport. We include both electron–phonon scattering and electron-ionized impurity scattering to accurately model scattering in a doped semiconductor. We find a strongly anisotropic mobility that favors transport in the direction parallel to the c-axis. At room temperature and intrinsic carrier concentrations, the low-energy polar-optical phonon modes dominate scattering, while ionized-impurity scattering dominates above 1018 cm−3.

1.
G. K.
Dalapati
,
H.
Sharma
,
A.
Guchhait
,
N.
Chakrabarty
,
P.
Bamola
,
Q.
Liu
,
G.
Saianand
,
A. M. S.
Krishna
,
S.
Mukhopadhyay
,
A.
Dey
,
T. K. S.
Wong
,
S.
Zhuk
,
S.
Ghosh
,
S.
Chakrabortty
,
C.
Mahata
,
S.
Biring
,
A.
Kumar
,
C. S.
Ribeiro
,
S.
Ramakrishna
,
A. K.
Chakraborty
,
S.
Krishnamurthy
,
P.
Sonar
, and
M.
Sharma
, “
Tin oxide for optoelectronic, photovoltaic and energy storage devices: A review
,”
J. Mater. Chem. A
9
(
31
),
16621
16684
(
2021
).
2.
S.
Das
and
V.
Jayaraman
, “
SnO2: A comprehensive review on structures and gas sensors
,”
Prog. Mater. Sci.
66
,
112
255
(
2014
).
3.
K.
Jenifer
,
S.
Arulkumar
,
S.
Parthiban
, and
J. Y.
Kwon
, “
A review on the recent advancements in tin oxide-based thin-film transistors for large-area electronics
,”
J. Electron. Mater.
49
(
12
),
7098
7111
(
2020
).
4.
Z.
Galazka
, “
Tin oxide (SnO2)
,” in
Transparent Semiconducting Oxides
(
Jenny Stanford Publishing
,
2020
), pp.
463
557
.
5.
J. A.
Marley
and
T. C.
MacAvoy
, “
Growth of stannic oxide crystals from the vapor phase
,”
J. Appl. Phys.
32
(
12
),
2504
2505
(
1961
).
6.
M.
Nagasawa
,
S.
Shionoya
, and
S.
Makishima
, “
Vapor reaction growth of SnO2 single crystals and their properties
,”
Jpn. J. Appl. Phys., Part 1
4
(
3
),
195
(
1965
).
7.
D. F.
Morgan
and
D. A.
Wright
, “
Electrical properties of single crystals of antimony-doped stannic oxide
,”
Br. J. Appl. Phys.
17
(
3
),
337
(
1966
).
8.
D. F.
Crabtree
,
R. N. S. M.
Mehdi
, and
D. A.
Wright
, “
Electron mobility and infra-red absorption in reduced tin oxide crystals
,”
J. Phys. D: Appl. Phys.
2
(
11
),
1503
1505
(
1969
).
9.
C. G.
Fonstad
and
R. H.
Rediker
, “
Electrical properties of high‐quality stannic oxide crystals
,”
J. Appl. Phys.
42
(
7
),
2911
2918
(
1971
).
10.
P.
Turkes
,
C.
Pluntke
, and
R.
Helbig
, “
Thermal conductivity of SnO2 single crystals
,”
J. Phys. C: Solid State Phys.
13
(
26
),
4941
(
1980
).
11.
M.
Feneberg
,
C.
Lidig
,
K.
Lange
,
M. E.
White
,
M. Y.
Tsai
,
J. S.
Speck
,
O.
Bierwagen
, and
R.
Goldhahn
, “
Anisotropy of the electron effective mass in rutile SnO2 determined by infrared ellipsometry
,”
Phys. Status Solidi A
211
(
1
),
82
86
(
2014
).
12.
O.
Bierwagen
and
Z.
Galazka
, “
The inherent transport anisotropy of rutile tin dioxide (SnO2) determined by van der Pauw measurements and its consequences for applications
,”
Appl. Phys. Lett.
112
(
9
),
092105
(
2018
).
13.
Y.
Hu
,
J.
Hwang
,
Y.
Lee
,
P.
Conlin
,
D. G.
Schlom
,
S.
Datta
, and
K.
Cho
, “
First principles calculations of intrinsic mobilities in tin-based oxide semiconductors SnO, SnO2, and Ta2SnO6
,”
J. Appl. Phys.
126
(
18
),
185701
(
2019
).
14.
Z.
Li
,
P.
Graziosi
, and
N.
Neophytou
, “
Electron and hole mobility of SnO2 from full-band electron–phonon and ionized impurity scattering computations
,”
Crystals
12
(
11
),
1591
(
2022
).
15.
S.
Poncé
,
W.
Li
,
S.
Reichardt
, and
F.
Giustino
, “
First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials
,”
Rep. Prog. Phys.
83
(
3
),
036501
(
2020
).
16.
J.
Leveillee
,
X.
Zhang
,
E.
Kioupakis
, and
F.
Giustino
, “
Ab initio calculation of carrier mobility in semiconductors including ionized-impurity scattering
,”
Phys. Rev. B
107
(
12
),
125207
(
2023
).
17.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
(
4
),
1419
1475
(
2012
).
18.
F.
Giustino
, “
Electron-phonon interactions from first principles
,”
Rev. Mod. Phys.
89
(
1
),
015003
(
2017
).
19.
H.
Lee
,
S.
Poncé
,
K.
Bushick
,
S.
Hajinazar
,
J.
Lafuente-Bartolome
,
J.
Leveillee
,
C.
Lian
,
J.-M.
Lihm
,
F.
Macheda
,
H.
Mori
,
H.
Paudyal
,
W. H.
Sio
,
S.
Tiwari
,
M.
Zacharias
,
X.
Zhang
,
N.
Bonini
,
E.
Kioupakis
,
E. R.
Margine
, and
F.
Giustino
, “
Electron–phonon physics from first principles using the EPW code
,”
npj Comput. Mater.
9
(
1
),
156
(
2023
).
20.
S.
Poncé
,
E. R.
Margine
, and
F.
Giustino
, “
Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors
,”
Phys. Rev. B
97
(
12
),
121201
(
2018
).
21.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
(
39
),
395502
(
2009
).
22.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M. B.
Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A. D.
Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A.
Otero-de-la-Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with Quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
(
46
),
465901
(
2017
).
23.
S.
Baroni
,
S.
De Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
, “
Phonons and related crystal properties from density-functional perturbation theory
,”
Rev. Mod. Phys.
73
(
2
),
515
562
(
2001
).
24.
P. D.
Borges
,
L. M. R.
Scolfaro
,
H. W.
Leite Alves
, and
E. F.
da Silva
, “
DFT study of the electronic, vibrational, and optical properties of SnO2
,”
Theor. Chem. Acc.
126
(
1–2
),
39
44
(
2010
).
25.
R. S.
Katiyar
,
P.
Dawson
,
M. M.
Hargreave
, and
G. R.
Wilkinson
, “
Dynamics of the rutile structure. III. Lattice dynamics, infrared and Raman spectra of SnO2
,”
J. Phys. C: Solid State Phys.
4
(
15
),
2421
(
1971
).
26.
M. S.
Hybertsen
and
S. G.
Louie
, “
Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies
,”
Phys. Rev. B
34
(
8
),
5390
5413
(
1986
).
27.
J.
Deslippe
,
G.
Samsonidze
,
D. A.
Strubbe
,
M.
Jain
,
M. L.
Cohen
, and
S. G.
Louie
, “
BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures
,”
Comput. Phys. Commun.
183
(
6
),
1269
1289
(
2012
).
28.
B.-C.
Shih
,
Y.
Xue
,
P.
Zhang
,
M. L.
Cohen
, and
S. G.
Louie
, “
Quasiparticle band gap of ZnO: High accuracy from the conventional G0W0 approach
,”
Phys. Rev. Lett.
105
(
14
),
146401
(
2010
).
29.
M. R.
Filip
,
C. E.
Patrick
, and
F.
Giustino
, “
GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite
,”
Phys. Rev. B
87
(
20
),
205125
(
2013
).
30.
J.
Deslippe
,
G.
Samsonidze
,
M.
Jain
,
M. L.
Cohen
, and
S. G.
Louie
, “
Coulomb-hole summations and energies for GW calculations with limited number of empty orbitals: A modified static remainder approach
,”
Phys. Rev. B
87
(
16
),
165124
(
2013
).
31.
M.
Feneberg
,
C.
Lidig
,
K.
Lange
,
R.
Goldhahn
,
M. D.
Neumann
,
N.
Esser
,
O.
Bierwagen
,
M. E.
White
,
M. Y.
Tsai
, and
J. S.
Speck
, “
Ordinary and extraordinary dielectric functions of rutile SnO2 up to 20 eV
,”
Appl. Phys. Lett.
104
(
23
),
231106
(
2014
).
32.
A.
Schleife
,
J. B.
Varley
,
F.
Fuchs
,
C.
Rödl
,
F.
Bechstedt
,
P.
Rinke
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Tin dioxide from first principles: Quasiparticle electronic states and optical properties
,”
Phys. Rev. B
83
(
3
),
035116
(
2011
).
33.
P.
Villars
and
K.
Cenzual
, see https://materials.springer.com/isp/crystallographic/docs/sd_1300805 for “
SnO2 rutile-type (SnO2) crystal structure: Datasheet from ‘PAULING FILE Multinaries Edition–2022’ in SpringerMaterials
.”
34.
M.
Dou
and
C.
Persson
, “
Comparative study of rutile and anatase SnO2 and TiO2: Band-edge structures, dielectric functions, and polaron effects
,”
J. Appl. Phys.
113
(
8
),
083703
(
2013
).
35.
K. J.
Button
,
C. G.
Fonstad
, and
W.
Dreybrodt
, “
Determination of the electron masses in stannic oxide by submillimeter cyclotron resonance
,”
Phys. Rev. B
4
(
12
),
4539
4542
(
1971
).
36.
R.
Summitt
, “
Infrared absorption in single‐crystal stannic oxide: Optical lattice‐vibration modes
,”
J. Appl. Phys.
39
(
8
),
3762
3767
(
1968
).
37.
G.
Pizzi
,
V.
Vitale
,
R.
Arita
,
S.
Blügel
,
F.
Freimuth
,
G.
Géranton
,
M.
Gibertini
,
D.
Gresch
,
C.
Johnson
,
T.
Koretsune
,
J.
Ibañez-Azpiroz
,
H.
Lee
,
J.-M.
Lihm
,
D.
Marchand
,
A.
Marrazzo
,
Y.
Mokrousov
,
J. I.
Mustafa
,
Y.
Nohara
,
Y.
Nomura
,
L.
Paulatto
,
S.
Poncé
,
T.
Ponweiser
,
J.
Qiao
,
F.
Thöle
,
S. S.
Tsirkin
,
M.
Wierzbowska
,
N.
Marzari
,
D.
Vanderbilt
,
I.
Souza
,
A. A.
Mostofi
, and
J. R.
Yates
, “
Wannier90 as a community code: New features and applications
,”
J. Phys.: Condens. Matter
32
(
16
),
165902
(
2020
).
38.
G.
Brunin
,
H. P. C.
Miranda
,
M.
Giantomassi
,
M.
Royo
,
M.
Stengel
,
M. J.
Verstraete
,
X.
Gonze
,
G.-M.
Rignanese
, and
G.
Hautier
, “
Electron-phonon beyond Fröhlich: Dynamical quadrupoles in polar and covalent solids
,”
Phys. Rev. Lett.
125
(
13
),
136601
(
2020
).
39.
G.
Brunin
,
H. P. C.
Miranda
,
M.
Giantomassi
,
M.
Royo
,
M.
Stengel
,
M. J.
Verstraete
,
X.
Gonze
,
G.-M.
Rignanese
, and
G.
Hautier
, “
Phonon-limited electron mobility in Si, GaAs, and GaP with exact treatment of dynamical quadrupoles
,”
Phys. Rev. B
102
(
9
),
094308
(
2020
).
40.
V. A.
Jhalani
,
J.-J.
Zhou
,
J.
Park
,
C. E.
Dreyer
, and
M.
Bernardi
, “
Piezoelectric electron-phonon interaction from ab initio dynamical quadrupoles: Impact on charge transport in Wurtzite GaN
,”
Phys. Rev. Lett.
125
(
13
),
136602
(
2020
).
41.
A. H.
Romero
,
D. C.
Allan
,
B.
Amadon
,
G.
Antonius
,
T.
Applencourt
,
L.
Baguet
,
J.
Bieder
,
F.
Bottin
,
J.
Bouchet
,
E.
Bousquet
,
F.
Bruneval
,
G.
Brunin
,
D.
Caliste
,
M.
Côté
,
J.
Denier
,
C.
Dreyer
,
P.
Ghosez
,
M.
Giantomassi
,
Y.
Gillet
,
O.
Gingras
,
D. R.
Hamann
,
G.
Hautier
,
F.
Jollet
,
G.
Jomard
,
A.
Martin
,
H. P. C.
Miranda
,
F.
Naccarato
,
G.
Petretto
,
N. A.
Pike
,
V.
Planes
,
S.
Prokhorenko
,
T.
Rangel
,
F.
Ricci
,
G.-M.
Rignanese
,
M.
Royo
,
M.
Stengel
,
M.
Torrent
,
M. J.
van Setten
,
B.
Van Troeye
,
M. J.
Verstraete
,
J.
Wiktor
,
J. W.
Zwanziger
, and
X.
Gonze
, “
ABINIT: Overview and focus on selected capabilities
,”
J. Chem. Phys.
152
(
12
),
124102
(
2020
).
42.
X.
Gonze
,
B.
Amadon
,
G.
Antonius
,
F.
Arnardi
,
L.
Baguet
,
J.-M.
Beuken
,
J.
Bieder
,
F.
Bottin
,
J.
Bouchet
,
E.
Bousquet
,
N.
Brouwer
,
F.
Bruneval
,
G.
Brunin
,
T.
Cavignac
,
J.-B.
Charraud
,
W.
Chen
,
M.
Côté
,
S.
Cottenier
,
J.
Denier
,
G.
Geneste
,
P.
Ghosez
,
M.
Giantomassi
,
Y.
Gillet
,
O.
Gingras
,
D. R.
Hamann
,
G.
Hautier
,
X.
He
,
N.
Helbig
,
N.
Holzwarth
,
Y.
Jia
,
F.
Jollet
,
W.
Lafargue-Dit-Hauret
,
K.
Lejaeghere
,
M. A. L.
Marques
,
A.
Martin
,
C.
Martins
,
H. P. C.
Miranda
,
F.
Naccarato
,
K.
Persson
,
G.
Petretto
,
V.
Planes
,
Y.
Pouillon
,
S.
Prokhorenko
,
F.
Ricci
,
G.-M.
Rignanese
,
A. H.
Romero
,
M. M.
Schmitt
,
M.
Torrent
,
M. J.
van Setten
,
B.
Van Troeye
,
M. J.
Verstraete
,
G.
Zérah
, and
J. W.
Zwanziger
, “
The ABINIT project: Impact, environment and recent developments
,”
Comput. Phys. Commun.
248
,
107042
(
2020
).
43.
M.
Royo
and
M.
Stengel
, “
First-principles theory of spatial dispersion: Dynamical quadrupoles and flexoelectricity
,”
Phys. Rev. X
9
(
2
),
021050
(
2019
).
44.
M. J.
van Setten
,
M.
Giantomassi
,
E.
Bousquet
,
M. J.
Verstraete
,
D. R.
Hamann
,
X.
Gonze
, and
G.-M.
Rignanese
, “
The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
,”
Comput. Phys. Commun.
226
,
39
54
(
2018
).
45.
S.
Poncé
,
F.
Macheda
,
E. R.
Margine
,
N.
Marzari
,
N.
Bonini
, and
F.
Giustino
, “
First-principles predictions of Hall and drift mobilities in semiconductors
,”
Phys. Rev. Res.
3
(
4
),
043022
(
2021
).
46.
K.
Bushick
,
K. A.
Mengle
,
S.
Chae
, and
E.
Kioupakis
, “
Electron and hole mobility of rutile GeO2 from first principles: An ultrawide-bandgap semiconductor for power electronics
,”
Appl. Phys. Lett.
117
(
18
),
182104
(
2020
).
47.
S.
Reif-Acherman
, “
Augustus Matthiessen: His studies on electrical conductivities and the origins of his ‘rule’ [scanning our past]
,”
Proc. IEEE
103
(
4
),
713
721
(
2015
).
48.
D. M.
Caughey
and
R. E.
Thomas
, “
Carrier mobilities in silicon empirically related to doping and field
,”
Proc. IEEE
55
(
12
),
2192
2193
(
1967
).
49.
F.
Schwierz
, “
An electron mobility model for wurtzite GaN
,”
Solid-State Electron.
49
(
6
),
889
895
(
2005
).
50.
R.
Claes
,
G.
Brunin
,
M.
Giantomassi
,
G.-M.
Rignanese
, and
G.
Hautier
, “
Assessing the quality of relaxation-time approximations with fully automated computations of phonon-limited mobilities
,”
Phys. Rev. B
106
(
9
),
094302
(
2022
).

Supplementary Material

You do not currently have access to this content.