Engineering of high-entropy cathode materials for lithium-ion batteries has been actively pursued owing to the outstanding conductivity of high-entropy materials benefited from the maximum entropy and unique antisite disordering structure. Olivine lithium metal phosphates such as LiMnPO4 and LiNiPO4 feature high working voltages but low capacities due to their insulation nature. In this work, the synthesis of the high-entropy lithium metal phosphate materials (HELMPs) is realized by combining mechanochemistry with a calcination method. By regulating lattice of HELMPs, the high-entropy Li(Mn0.35Fe0.35Co0.1Mg0.1Ca0.1)PO4 reveals three typical high-voltage plateaus in charge–discharge curves corresponding to the redox of Fe, Mn, and Co in the voltage range of 2.0–4.9 V vs Li+/Li, and a much higher initial capacity than LiMnPO4 (104 vs 15 mAh g−1).

1.
Z.
Yang
,
J.
Zhang
,
M. C.
Kintner-Meyer
,
X.
Lu
,
D.
Choi
,
J. P.
Lemmon
, and
J.
Liu
, “
Electrochemical energy storage for green grid
,”
Chem. Rev.
111
,
3577
3613
(
2011
).
2.
G. M.
Joselin Herbert
,
S.
Iniyan
,
E.
Sreevalsan
, and
S.
Rajapandian
, “
A review of wind energy technologies
,”
Renewable Sustainable Energy Rev.
11
,
1117
1145
(
2007
).
3.
J. B.
Goodenough
and
K.-S.
Park
, “
The Li-ion rechargeable battery: A perspective
,”
J. Am. Chem. Soc.
135
,
1167
1176
(
2013
).
4.
Y.-P.
Deng
,
Z.-G.
Wu
,
R.
Liang
,
Y.
Jiang
,
D.
Luo
,
A.
Yu
, and
Z.
Chen
, “
Layer-based heterostructured cathodes for lithium-ion and sodium-ion batteries
,”
Adv. Funct. Mater.
29
,
1808522
(
2019
).
5.
A.
Manthiram
, “
A reflection on lithium-ion battery cathode chemistry
,”
Nat. Commun.
11
,
1550
(
2020
).
6.
A. K.
Padhi
,
K. S.
Nanjundaswamy
, and
J. B.
Goodenough
, “
Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
,”
J. Electrochem. Soc.
144
,
1188
1194
(
1997
).
7.
A.
Manthiram
and
J. B.
Goodenough
, “
Lithium-based polyanion oxide cathodes
,”
Nat. Energy
6
,
844
845
(
2021
).
8.
A.
Amiri
and
R.
Shahbazian-Yassar
, “
Recent progress of high-entropy materials for energy storage and conversion
,”
J. Mater. Chem. A
9
,
782
823
(
2021
).
9.
T.
Jin
,
X.
Sang
,
R. R.
Unocic
,
R. T.
Kinch
,
X.
Liu
,
J.
Hu
,
H.
Liu
, and
S.
Dai
, “
Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy
,”
Adv. Mater
30
,
1707512
(
2018
).
10.
Y.
Ma
,
Y.
Ma
,
S. L.
Dreyer
,
Q.
Wang
,
K.
Wang
,
D.
Goonetilleke
,
A.
Omar
,
D.
Mikhailova
,
H.
Hahn
,
B.
Breitung
, and
T.
Brezesinski
, “
High-entropy metal–organic frameworks for highly reversible sodium storage
,”
Adv. Mater.
33
,
2101342
(
2021
).
11.
A.
Sarkar
,
L.
Velasco
,
D.
Wang
,
Q.
Wang
,
G.
Talasila
,
L.
de Biasi
,
C.
Kübel
,
T.
Brezesinski
,
S. S.
Bhattacharya
,
H.
Hahn
, and
B.
Breitung
, “
High entropy oxides for reversible energy storage
,”
Nat. Commun.
9
,
3400
(
2018
).
12.
C.
Zhao
,
F.
Ding
,
Y.
Lu
,
L.
Chen
, and
Y.-S.
Hu
, “
High-entropy layered oxide cathodes for sodium-ion batteries
,”
Angew. Chem. Int. Ed.
59
,
264
269
(
2020
).
13.
M. J. R.
Haché
,
C.
Cheng
, and
Y.
Zou
, “
Nanostructured high-entropy materials
,”
J. Mater. Res.
35
,
1051
1075
(
2020
).
14.
H.
Ji
,
A.
Urban
,
D. A.
Kitchaev
,
D.-H.
Kwon
,
N.
Artrith
,
C.
Ophus
,
W.
Huang
,
Z.
Cai
,
T.
Shi
,
J. C.
Kim
,
H.
Kim
, and
G.
Ceder
, “
Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries
,”
Nat. Commun.
10
,
592
(
2019
).
15.
H.
Gao
,
D.
Tran
, and
Z.
Chen
, “
Seeking direct cathode regeneration for more efficient lithium-ion battery recycling
,”
Curr. Opin. Electrochem.
31
,
100875
(
2022
).
16.
Z.
Lun
,
B.
Ouyang
,
D.-H.
Kwon
,
Y.
Ha
,
E. E.
Foley
,
T.-Y.
Huang
,
Z.
Cai
,
H.
Kim
,
M.
Balasubramanian
,
Y.
Sun
,
J.
Huang
,
Y.
Tian
,
H.
Kim
,
B. D.
McCloskey
,
W.
Yang
,
R. J.
Clément
,
H.
Ji
, and
G.
Ceder
, “
Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries
,”
Nat. Mater.
20
,
214
221
(
2021
).
17.
Q.
Wang
,
A.
Sarkar
,
D.
Wang
,
L.
Velasco
,
R.
Azmi
,
S. S.
Bhattacharya
,
T.
Bergfeldt
,
A.
Duvel
,
P.
Heitjans
,
T.
Brezesinski
,
H.
Hahn
, and
B.
Breitung
, “
Multi-anionic and-cationic compounds: New high entropy materials for advanced Li-ion batteries
,”
Energy Environ. Sci.
12
,
2433
2442
(
2019
).
18.
J.
Sturman
,
C.-H.
Yim
,
E. A.
Baranova
, and
Y.
Abu-Lebdeh
, “
Communication—Design of LiNi0.2Mn0.2Co0.2Fe0.2Ti0.2O2 as a high-entropy cathode for lithium-ion batteries guided by machine learning
,”
J. Electrochem. Soc.
168
,
050541
(
2021
).
19.
J.
Wang
,
Y.
Cui
,
Q.
Wang
,
K.
Wang
,
X.
Huang
,
D.
Stenzel
,
A.
Sarkar
,
R.
Azmi
,
T.
Bergfeldt
,
S. S.
Bhattacharya
,
R.
Kruk
,
H.
Hahn
,
S.
Schweidler
,
T.
Brezesinski
, and
B.
Breitung
, “
Lithium containing layered high entropy oxide structures
,”
Sci. Rep.
10
,
18430
(
2020
).
20.
D. H.
Doughty
and
E. P.
Roth
, “
A general discussion of Li ion battery safety
,”
Electrochem. Soc. Interface
21
,
37
(
2012
).
21.
Z.
Gong
and
Y.
Yang
, “
Recent advances in the research of polyanion-type cathode materials for Li-ion batteries
,”
Energy Environ. Sci.
4
,
3223
3242
(
2011
).
22.
T.
Drezen
,
N.-H.
Kwon
,
P.
Bowen
,
I.
Teerlinck
,
M.
Isono
, and
I.
Exnar
, “
Effect of particle size on LiMnPO4 cathodes
,”
J. Power Sources
174
,
949
953
(
2007
).
23.
J.
Han
,
J.
Yang
,
Z.
Xu
,
H.
Li
, and
J.
Wang
, “
Dramatic improvement in high-rate capability of LiMnPO4 nanosheets via crystallite size regulation
,”
J. Alloys Compd.
894
,
162510
(
2022
).
24.
Y.
Wang
and
F.
Yu
, “
Probing the morphology dependence, size preference and electron/ion conductance of manganese-based lithium transition-metal phosphate as cathode materials for high-performance lithium-ion battery
,”
J. Alloys Compd.
850
,
156773
(
2021
).
25.
A.
Mauger
,
C. M.
Julien
,
M.
Armand
,
J. B.
Goodenough
, and
K.
Zaghib
, “
Li(Ni,Co)PO4 as cathode materials for lithium batteries: Will the dream come true?
,”
Curr. Opin. Electrochem.
6
,
63
69
(
2017
).
26.
X.
Xu
,
Y.
Qin
,
W.
Yang
,
D.
Sun
,
Y.
Liu
,
B.
Guo
, and
D.
Wang
, “
Influence of HDI as a cathode film-forming additive on the performance of LiFe0.2Mn0.8PO4/C cathode
,”
RSC Adv.
7
,
41970
41972
(
2017
).
27.
D.
Di Lecce
and
J.
Hassoun
, “
Lithium transport properties in LiMn1−αFeαPO4 olivine cathodes
,”
J. Phys. Chem. C
119
,
20855
20863
(
2015
).
28.
S.
Sreedeep
,
S.
Natarajan
, and
V.
Aravindan
, “
Recent advancements in LiCoPO4 cathodes using electrolyte additives
,”
Curr. Opin. Electrochem.
31
,
100868
(
2022
).
29.
M.
Köntje
,
M.
Memm
,
P.
Axmann
, and
M.
Wohlfahrt-Mehrens
, “
Substituted transition metal phospho olivines LiMM′PO4 (M = Mn, M′ = Fe, Co, Mg): Optimisation routes for LiMnPO4
,”
Prog. Solid State Chem.
42
,
106
117
(
2014
).
30.
K.
Kisu
,
E.
Iwama
,
W.
Onishi
,
S.
Nakashima
,
W.
Naoi
, and
K.
Naoi
, “
Ultrafast nano-spherical single-crystalline LiMn0.792Fe0.198Mg0.010PO4 solid-solution confined among unbundled interstices of SGCNTs
,”
J. Mater. Chem. A
2
,
20789
20798
(
2014
).
31.
C.
Hu
,
H.
Yi
,
H.
Fang
,
B.
Yang
,
Y.
Yao
,
W.
Ma
, and
Y.
Dai
, “
Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg
,”
Electrochem. Commun
12
,
1784
1787
(
2010
).
32.
W.
Liu
,
X.
Liu
,
R.
Hao
,
Z.
Yang
,
B.
Ouyang
,
M.
Zhang
,
M.
Pan
, and
K.
Liu
, “
Contribution of calcium ion doping to the rate property for LiFe0.5Mn0.5PO4/C
,”
J. Electroanal. Chem.
929
,
117117
(
2023
).
33.
T.
Wang
,
J.
Fan
,
C.-L.
Do-Thanh
,
X.
Suo
,
Z.
Yang
,
H.
Chen
,
Y.
Yuan
,
H.
Lyu
,
S.
Yang
, and
S.
Dai
, “
Perovskite oxide–halide solid solutions: A platform for electrocatalysts
,”
Angew. Chem. Int. Ed.
60
,
9953
9958
(
2021
).
34.
A.
Örnek
, “
Positive effects of a particular type of microwave-assisted methodology on the electrochemical properties of olivine LiMPO4 (M=Fe, Co and Ni) cathode materials
,”
Chem. Eng. J
331
,
501
509
(
2018
).
35.
J. W.
Lee
,
M. S.
Park
,
B.
Anass
,
J. H.
Park
,
M. S.
Paik
, and
S. G.
Doo
, “
Electrochemical lithiation and delithiation of LiMnPO4: Effect of cation substitution
,”
Electrochim. Acta
55
,
4162
4169
(
2010
).
36.
N. S.
Norberg
and
R.
Kostecki
, “
FTIR spectroscopy of a LiMnPO4 composite cathode
,”
Electrochim. Acta
56
,
9168
9171
(
2011
).
37.
A. A.
Salah
,
P.
Jozwiak
,
J.
Garbarczyk
,
K.
Benkhouja
,
K.
Zaghib
,
F.
Gendron
, and
C. M.
Julien
, “
Local structure and redox energies of lithium phosphates with olivine- and Nasicon-like structures
,”
J. Power Sources
140
,
370
375
(
2005
).
38.
M. T.
Paques-Ledent
and
P.
Tarte
, “
Vibrational studies of olivine-type compounds—II Orthophosphates, -arsenates and -vanadates AIBIIXVO4
,”
Spectrochim. Acta, Part A
30
,
673
689
(
1974
).
39.
J.
Fan
,
T.
Wang
,
C. A.
Bridges
,
A. Y.
Borisevich
,
C. A.
Steren
,
P.
Li
,
B. P.
Thapaliya
,
C.-L.
Do-Thanh
,
Z.
Yang
,
Y.
Yuan
, and
S.
Dai
, “
Entropy stabilized cubic Li7La3Zr2O12 with reduced lithium diffusion activation energy: Studied using solid-state NMR spectroscopy
,”
RSC Adv.
13
,
19856
19861
(
2023
).
40.
J.
Fan
,
T.
Wang
,
Y.
Yuan
,
C.-L.
Do-Thanh
,
X.
Suo
,
Z.
Yang
,
H.
Chen
, and
S.
Dai
, “
Mechanochemically assisted synthesis of high-entropy layer-structured dittmarite analogues
,”
ACS Appl. Energy Mater.
5
,
3290
3297
(
2022
).
41.
Y. H.
Han
,
J. F.
Ni
,
J. Z.
Liu
,
H. B.
Wang
, and
L. J.
Gao
, “
Improving electrochemical performance of LiCoPO4 via Mn substitution
,”
Mater. Technol.
28
,
265
269
(
2013
).
42.
G.
Pagot
,
F.
Bertasi
,
G.
Nawn
,
E.
Negro
,
G.
Carraro
,
D.
Barreca
,
C.
Maccato
,
S.
Polizzi
, and
V.
Di Noto
, “
High-performance olivine for lithium batteries: Effects of Ni/Co doping on the properties of LiFeαNiβCoγPO4 cathodes
,”
Adv. Funct. Mater.
25
,
4032
4037
(
2015
).
43.
N.
Tolganbek
,
Y.
Yerkinbekova
,
S.
Kalybekkyzy
,
Z.
Bakenov
, and
A.
Mentbayeva
, “
Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review
,”
J. Alloys Compd.
882
,
160774
(
2021
).
44.
P.
Lightfoot
,
M. C.
Pienkowski
,
P. G.
Bruce
, and
I.
Abrahams
, “
Synthesis and structure of LiCaPo4 by combined X-ray and neutron powder diffraction
,”
J. Mater. Chem.
1
,
1061
1063
(
1991
).
45.
R.
Gupta
,
S.
Saha
,
M.
Tomar
,
V. K.
Sachdev
, and
V.
Gupta
, “
Effect of manganese doping on conduction in olivine LiFePO4
,”
J. Mater. Sci.: Mater. Electron.
28
,
5192
5199
(
2017
).
46.
F.
Li
,
R.
Tao
,
X.
Tan
,
J.
Xu
,
D.
Kong
,
L.
Shen
,
R.
Mo
,
J.
Li
, and
Y.
Lu
, “
Graphite-embedded lithium iron phosphate for high-power–energy cathodes
,”
Nano Lett.
21
,
2572
2579
(
2021
).
47.
M.
Kempaiah Devaraju
,
Q.
Duc Truong
,
H.
Hyodo
,
Y.
Sasaki
, and
I.
Honma
, “
Synthesis, characterization and observation of antisite defects in LiNiPO4 nanomaterials
,”
Sci. Rep.
5
,
11041
(
2015
).

Supplementary Material

You do not currently have access to this content.