Body-centered cubic (BCC) lightweight refractory high-entropy alloys (LWRHEAs) with Al contents have attracted much attention due to their low density and excellent mechanical properties. However, these typical lightweight alloys often suffer from poor room temperature plasticity. In this study, we prepared TiZrNbTa0.1Alx LWRHEAs by using a high-vacuum arc-melting technique and investigated the influence of Al content on the phase structures and mechanical properties. It was found that the TiZrNbTa0.1Al1 alloy showed a BCC solid solution matrix with some micrometer-sized Al3Zr5 precipitates and exhibited a density of 6.110 ± 0.003 g/cm3. The TiZrNbTa0.1Al1 alloy had a low mixed enthalpy of −20.831 kJ/mol, a compressive yield strength of 1037 ± 178 MPa, and a fracture plasticity of ∼6%. As a result of reducing the Al content, the TiZrNbTa0.1Al0.2 alloy showed a simple BCC phase structure without any precipitates and maintained a low density of 6.743 ± 0.008 g/cm3. The TiZrNbTa0.1Al0.2 alloy had a relatively high mixed enthalpy of −4.5577 kJ/mol, a high yield strength of 1022 ± 51 MPa, and a plasticity of >70%. The TEM analysis results demonstrated that the excellent mechanical properties of this LWRHEA were mainly attributed to the reducing Al content, which could elevate the mixed enthalpy of the alloy to eliminate the brittle Al3Zr5 phase and induce the formation of dense network dislocations at the grain boundaries.

1.
J. P.
Couzinié
,
O. N.
Senkov
,
D. B.
Miracle
, and
G.
Dirras
,
Data Brief
21
,
1622
1641
(
2018
).
2.
S. L.
Wei
,
S. J.
Kim
,
J. Y.
Kang
,
Y.
Zhang
,
Y. J.
Zhang
,
T.
Furuhara
,
E. S.
Park
, and
C. C.
Tasan
,
Nat. Mater.
19
,
1175
(
2020
).
3.
D. B.
Miracle
,
M. H.
Tsai
,
O. N.
Senkov
,
V.
Soni
, and
R.
Banerjee
,
Scr. Mater.
187
,
445
452
(
2020
).
4.
W. B.
Liao
,
C. H.
Xu
,
T. L.
Wang
,
C. S.
Feng
,
M. A.
Khan
, and
G.
Yasin
,
Vacuum
207
,
111586
(
2023
).
5.
K.
Cui
,
J.
Qiao
,
P. K.
Liaw
, and
Y.
Zhang
,
Sci. China: Phys., Mech. Astron.
67
,
227101
(
2024
).
6.
O. N.
Senkov
,
G. B.
Wilks
,
J. M.
Scott
, and
D. B.
Miracle
,
Intermetallics
19
,
698
706
(
2011
).
7.
O. N.
Senkov
,
D. B.
Miracle
,
K. J.
Chaput
, and
J. P.
Couzinie
,
J. Mater. Res.
33
,
3092
3128
(
2018
).
8.
N. D.
Stepanov
,
D. G.
Shaysultanov
,
G. A.
Salishchev
, and
M. A.
Tikhonovsky
,
Mater. Lett.
142
,
153
155
(
2015
).
9.
Z. D.
Han
,
N.
Chen
,
S. F.
Zhao
,
L. W.
Fan
,
G. N.
Yang
,
Y.
Shao
, and
K. F.
Yao
,
Intermetallics
84
,
153
157
(
2017
).
10.
S.
Zeng
,
Y. K.
Zhou
,
H.
Li
,
H. W.
Zhang
,
H. F.
Zhang
, and
Z. W.
Zhu
,
J. Mater. Sci. Technol.
130
,
64
74
(
2022
).
11.
O. N.
Senkov
,
S. V.
Senkova
, and
C.
Woodward
,
Acta Mater.
68
,
214
228
(
2014
).
12.
J. Y.
Pang
,
H. W.
Zhang
,
L.
Zhang
,
Z. W.
Zhu
,
H. M.
Fu
,
H.
Li
,
A. M.
Wang
,
Z. K.
Li
, and
H. F.
Zhang
,
Mater. Lett.
290
,
129428
(
2021
).
13.
S.
Gorsse
,
D. B.
Miracle
, and
O. N.
Senkov
,
Acta Mater.
135
,
177
187
(
2017
).
14.
J.
Jayaraj
,
P.
Thirathipviwat
,
J.
Han
, and
A.
Gebert
,
Intermetallics
100
,
9
19
(
2018
).
15.
Y. G.
Dong
,
S.
Chen
,
N. N.
Jia
,
Q. H.
Zhang
,
L.
Wang
,
Y. F.
Xue
, and
K.
Jin
,
Tungsten
3
,
406
414
(
2021
).
16.
O. N.
Senkov
,
C.
Woodward
, and
D. B.
Miracle
,
J. Metals
66
,
2030
2042
(
2014
).
17.
N. D.
Stepanov
,
N. Y.
Yurchenko
,
D. G.
Shaysultanov
,
G. A.
Salishchev
, and
M. A.
Tikhonovsky
,
Mater. Sci. Technol.
31
,
1184
1193
(
2015
).
18.
X. P.
Wang
and
F. T.
Kong
,
J. Aeronaut. Mater.
39
,
1
19
(
2019
).
19.
V.
Soni
,
B.
Gwalani
,
T.
Alam
,
S.
Dasari
,
Y.
Zheng
,
O. N.
Senkov
,
D.
Miracle
, and
R.
Banerjee
,
Acta Mater.
185
,
89
97
(
2020
).
20.
O. N.
Senkov
,
J. K.
Jensen
,
A. L.
Pilchak
,
D. B.
Miracle
, and
H. L.
Fraser
,
Mater. Des.
139
,
498
511
(
2018
).
21.
S.
Guo
and
C. T.
Liu
,
Prog. Nat. Sci.: Mater. Int.
21
,
433
446
(
2011
).
22.
J.
Du
,
G.
Zhao
,
Q.
Deng
,
X.
Lu
, and
B.
Zhang
,
J. Aeronaut. Mater.
36
,
27
39
(
2016
).
23.
Z. P.
Lu
,
H.
Wang
,
M. W.
Chen
,
I.
Baker
,
J. W.
Yeh
,
C. T.
Liu
, and
T. G.
Nieh
,
Intermetallics
66
,
67
76
(
2015
).
24.
J. W.
Yeh
,
S. K.
Chen
,
S. J.
Lin
,
J. Y.
Gan
,
T. S.
Chin
,
T. T.
Shun
,
C. H.
Tsau
, and
S. Y.
Chang
,
Adv. Eng. Mater.
6
,
299
303
(
2004
).
25.
A.
Takeuchi
and
A.
Inoue
,
Mater. Sci. Eng., A
304–306
,
446
451
(
2001
).
26.
A.
Takeuchi
and
A.
Inoue
,
Mater. Trans.
46
,
2817
2829
(
2005
).
27.
Z.
An
,
A.
Li
,
S.
Mao
,
T.
Yang
,
L.
Zhu
,
R.
Wang
,
Z.
Wu
,
B.
Zhang
,
R.
Shao
,
C.
Jiang
,
B.
Cao
,
C.
Shi
,
Y.
Ren
,
C.
Liu
,
H.
Long
,
J.
Zhang
,
W.
Li
,
F.
He
,
L.
Sun
,
J.
Zhao
,
L.
Yang
,
X.
Zhou
,
X.
Wei
,
Y.
Chen
,
Z.
Lu
,
F.
Ren
,
C.
Liu
,
Z.
Zhang
, and
X.
Han
,
Nature
625
,
697
702
(
2024
).
You do not currently have access to this content.