Multi-principal element alloys are a novel class of materials that are formed by combining multiple elements in high concentrations and show exceptional properties compared to conventional alloys. These alloys have high configurational entropy due to inherent atomic disorder. The Cauchy–Born rule is a popular homogenization method for linking atomistic to continuum length scales. In this Letter, we use ab initio density functional theory calculations to report that the Cauchy–Born rule, which holds in conventional alloys in the absence of defects, is not valid in multi-principal element alloys. The violation of the Cauchy–Born rule in these alloys is attributed to the presence of atomic disorder due to which the deformations are inhomogeneous. Our results also show the deviations in deformation are related to the magnitude of the stretch and shear by power laws.

1.
E. B.
Tadmor
,
M.
Ortiz
, and
R.
Phillips
, “
Quasicontinuum analysis of defects in solids
,”
Philos. Mag. A
73
,
1529
1563
(
1996
).
2.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
1996
).
3.
J.
Ericksen
, “
On the Cauchy–Born rule
,”
Math. Mech. Solids
13
,
199
220
(
2008
).
4.
J.
Ericksen
, “
The Cauchy and Born hypotheses for crystals
,” Mechanics and Mathematics of Crystals: Selected Papers JL Ericksen 117 (
2005
).
5.
M.
Gurtin
,
Phase Transformations and Material Instabilities in Solids
(
Elsevier
,
2012
).
6.
P.
Steinmann
,
A.
Elizondo
, and
R.
Sunyk
, “
Studies of validity of the Cauchy–Born rule by direct comparison of continuum and atomistic modelling
,”
Modell. Simul. Mater. Sci. Eng.
15
,
S271
(
2006
).
7.
W. A.
Curtin
and
R. E.
Miller
, “
Atomistic/continuum coupling in computational materials science
,”
Modell. Simul. Mater. Sci. Eng.
11
,
R33
(
2003
).
8.
A.
Aghaei
,
M. A.
Qomi
,
M.
Kazemi
, and
A.
Khoei
, “
Stability and size-dependency of Cauchy–Born hypothesis in three-dimensional applications
,”
Int. J. Solids Struct.
46
,
1925
1936
(
2009
).
9.
A.
Khoei
,
M. A.
Qomi
,
M.
Kazemi
, and
A.
Aghaei
, “
An investigation on the validity of Cauchy–Born hypothesis using Sutton-Chen many-body potential
,”
Comput. Mater. Sci.
44
,
999
1006
(
2009
).
10.
S.
Ghosh
and
P.
Suryanarayana
, “
Electronic structure study regarding the influence of macroscopic deformations on the vacancy formation energy in aluminum
,”
Mech. Res. Commun.
99
,
58
63
(
2019
).
11.
S.
Xiao
and
T.
Belytschko
, “
A bridging domain method for coupling continua with molecular dynamics
,”
Comput. Methods Appl. Mech. Eng.
193
,
1645
1669
(
2004
).
12.
W. K.
Liu
,
H. S.
Park
,
D.
Qian
,
E. G.
Karpov
,
H.
Kadowaki
, and
G. J.
Wagner
, “
Bridging scale methods for nanomechanics and materials
,”
Comput. Methods Appl. Mech. Eng.
195
,
1407
1421
(
2006
).
13.
J.-W.
Yeh
,
S.-K.
Chen
,
S.-J.
Lin
,
J.-Y.
Gan
,
T.-S.
Chin
,
T.-T.
Shun
,
C.-H.
Tsau
, and
S.-Y.
Chang
, “
Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
,”
Adv. Eng. Mater.
6
,
299
303
(
2004
).
14.
B.
Cantor
,
I.
Chang
,
P.
Knight
, and
A.
Vincent
, “
Microstructural development in equiatomic multicomponent alloys
,”
Mater. Sci. Eng.: A
375–377
,
213
218
(
2004
).
15.
E. P.
George
,
D.
Raabe
, and
R. O.
Ritchie
, “
High-entropy alloys
,”
Nat. Rev. Mater.
4
,
515
534
(
2019
).
16.
E. P.
George
,
W.
Curtin
, and
C. C.
Tasan
, “
High entropy alloys: A focused review of mechanical properties and deformation mechanisms
,”
Acta Mater.
188
,
435
474
(
2020
).
17.
C.
Varvenne
,
G. P. M.
Leyson
,
M.
Ghazisaeidi
, and
W. A.
Curtin
, “
Solute strengthening in random alloys
,”
Acta Mater.
124
,
660
683
(
2017
).
18.
J.-W.
Yeh
, “
Alloy design strategies and future trends in high-entropy alloys
,”
JOM
65
,
1759
1771
(
2013
).
19.
Y.
Zhang
,
T. T.
Zuo
,
Z.
Tang
,
M. C.
Gao
,
K. A.
Dahmen
,
P. K.
Liaw
, and
Z. P.
Lu
, “
Microstructures and properties of high-entropy alloys
,”
Prog. Mater. Sci.
61
,
1
93
(
2014
).
20.
M.-H.
Tsai
and
J.-W.
Yeh
, “
High-entropy alloys: A critical review
,”
Mater. Res. Lett.
2
,
107
123
(
2014
).
21.
Y.
Ye
,
Q.
Wang
,
J.
Lu
,
C.
Liu
, and
Y.
Yang
, “
High-entropy alloy: Challenges and prospects
,”
Mater. Today
19
,
349
362
(
2016
).
22.
P.
Koželj
,
S.
Vrtnik
,
A.
Jelen
,
S.
Jazbec
,
Z.
Jagličić
,
S.
Maiti
,
M.
Feuerbacher
,
W.
Steurer
, and
J.
Dolinšek
, “
Discovery of a superconducting high-entropy alloy
,”
Phys. Rev. Lett.
113
,
107001
(
2014
).
23.
J.
Lužnik
,
P.
Koželj
,
S.
Vrtnik
,
A.
Jelen
,
Z.
Jagličić
,
A.
Meden
,
M.
Feuerbacher
, and
J.
Dolinšek
, “
Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy
,”
Phys. Rev. B
92
,
224201
(
2015
).
24.
Y.
Zhang
,
G. M.
Stocks
,
K.
Jin
,
C.
Lu
,
H.
Bei
,
B. C.
Sales
,
L.
Wang
,
L. K.
Béland
,
R. E.
Stoller
,
G. D.
Samolyuk
et al, “
Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys
,”
Nat. Commun.
6
,
8736
(
2015
).
25.
Z.
Fan
,
H.
Wang
,
Y.
Wu
,
X.
Liu
, and
Z.
Lu
, “
Thermoelectric high-entropy alloys with low lattice thermal conductivity
,”
RSC Adv.
6
,
52164
52170
(
2016
).
26.
Y.
Zhang
,
T.
Zuo
,
Y.
Cheng
, and
P. K.
Liaw
, “
High-entropy alloys with high saturation magnetization, electrical resistivity and malleability
,”
Sci. Rep.
3
,
1455
(
2013
).
27.
Y.
Xie
and
S.
Li
, “
Geometrically-compatible dislocation pattern and modeling of crystal plasticity in body-centered cubic (bcc) crystal at micron scale
,”
Comput. Modeling Eng. Sci.
129
,
1419
(
2021
).
28.
W.
E
and
P.
Ming
, “
Cauchy–Born rule and the stability of crystalline solids: Static problems
,”
Arch. Ration. Mech. Anal.
183
,
241
297
(
2007
).
29.
J.
Song
and
Y.
Wei
, “
A method to determine material length scale parameters in elastic strain gradient theory
,”
J. Appl. Mech.
87
,
031010
(
2020
).
30.
H. S.
Park
and
P. A.
Klein
, “
A surface Cauchy-Born model for silicon nanostructures
,”
Comput. Methods Appl. Mech. Eng.
197
,
3249
3260
(
2008
).
31.
S.
Urata
and
S.
Li
, “
Higher order Cauchy–Born rule based multiscale cohesive zone model and prediction of fracture toughness of silicon thin films
,”
Int. J. Fract.
203
,
159
181
(
2017
).
32.
A.
Khoei
,
H.
DorMohammadi
, and
A.
Aramoon
, “
A temperature-related boundary Cauchy–Born method for multi-scale modeling of silicon nano-structures
,”
Phys. Lett. A
378
,
551
560
(
2014
).
33.
X.
Guo
,
J.
Wang
, and
H.
Zhang
, “
Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy–Born rule
,”
Int. J. Solids Struct.
43
,
1276
1290
(
2006
).
34.
M.
Arroyo
and
T.
Belytschko
, “
Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule
,”
Phys. Rev. B
69
,
115415
(
2004
).
35.
T.
Friesecke
, “
Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice
,”
J. Nonlinear Sci.
12
,
445
478
(
2002
).
36.
K.
Bhattacharya
,
Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect
(
Oxford University Press
,
2003
), Vol.
2
.
37.
The ordered multi-lattice configuration for High Entropy Alloys has not been experimentally observed, and our usage here is purely for comparison.
38.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
39.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
40.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
et al, “
Quantum espresso: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
41.
J. P.
Perdew
, “
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
33
,
8822
(
1986
).
42.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
, “
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
,”
Phys. Rev. B
46
,
6671
(
1992
).
43.
G.
Zanzotto
, “
On the material symmetry group of elastic crystals and the Born rule
,”
Arch. Ration. Mech. Anal.
121
,
1
36
(
1992
).
44.
S.
Ghosh
and
P.
Suryanarayana
, “
Sparc: Accurate and efficient finite-difference formulation and parallel implementation of density functional theory: Extended systems
,”
Comput. Phys. Commun.
216
,
109
125
(
2017
).
45.
S.
Ghosh
and
K.
Bhattacharya
, “
Spectral quadrature for the first principles study of crystal defects: Application to magnesium
,”
J. Comput. Phys.
456
,
111035
(
2022
).
46.
R.
Zhang
,
S.
Zhao
,
J.
Ding
,
Y.
Chong
,
T.
Jia
,
C.
Ophus
,
M.
Asta
,
R. O.
Ritchie
, and
A. M.
Minor
, “
Short-range order and its impact on the CrCoNi medium-entropy alloy
,”
Nature
581
,
283
287
(
2020
).
47.
X.
Chen
,
Q.
Wang
,
Z.
Cheng
,
M.
Zhu
,
H.
Zhou
,
P.
Jiang
,
L.
Zhou
,
Q.
Xue
,
F.
Yuan
,
J.
Zhu
et al, “
Direct observation of chemical short-range order in a medium-entropy alloy
,”
Nature
592
,
712
716
(
2021
).
48.
G.
Anand
,
S.
Ghosh
, and
M.
Eisenbach
, “
Order parameter engineering for random systems
,”
High Entropy Alloys Mater.
1
,
271
(
2023
).
49.
M.
Ponga
,
M.
Hendy
,
O. K.
Orhan
, and
S.
Ghosh
, “
Effects of the local chemical environment on vacancy diffusion in multi-principal element alloys
,” arXiv:2209.04010 (
2022
).
50.
A.
Sarkar
,
Q.
Wang
,
A.
Schiele
,
M. R.
Chellali
,
S. S.
Bhattacharya
,
D.
Wang
,
T.
Brezesinski
,
H.
Hahn
,
L.
Velasco
, and
B.
Breitung
, “
High-entropy oxides: Fundamental aspects and electrochemical properties
,”
Adv. Mater.
31
,
1806236
(
2019
).
51.
J.
Ericksen
, “
Nonlinear elasticity of diatomic crystals
,”
Int. J. Solids Struct.
6
,
951
957
(
1970
).
52.
J.
Ericksen
, “
On nonessential descriptions of crystal multilattices
,”
Math. Mech. Solids
3
,
363
392
(
1998
).
53.
Y. S.
Teh
,
S.
Ghosh
, and
K.
Bhattacharya
, “
Machine-learned prediction of the electronic fields in a crystal
,”
Mech. Mater.
163
,
104070
(
2021
).
54.
G.
Anand
,
S.
Ghosh
,
L.
Zhang
,
A.
Anupam
,
C. L.
Freeman
,
C.
Ortner
,
M.
Eisenbach
, and
J. R.
Kermode
, “
Exploiting machine learning in multiscale modelling of materials
,”
J. Inst. Eng. India Ser. D
104
,
867
877
(
2023
).
You do not currently have access to this content.