Using hybrid molecular dynamics and Monte Carlo simulations, we examine the role of lattice distortion (LD) and chemical short-range ordering (CSRO) on the development of defects ahead of a mode I crack in medium entropy alloy CoCrNi. We show that CSRO noticeably increases fracture toughness. The result can be explained by the effect of CSRO on lowering LD and increasing intrinsic stacking fault energy and the direct impact CSRO has on the energetic barriers for emitting partial dislocations and forming nanotwins from CoCr clusters on the crack tip. CSRO allows the nanotwin domains to further support inelastic deformation, such as dislocation glide and amorphization, leading to stable crack-tip plasticity and postponement of softening. These findings imply that the superior fracture toughness in CoCrNi can be attributed to the non-negligible CSRO that naturally exists.

1.
S.
Chen
,
W.
Li
,
X.
Xie
,
J.
Brechtl
,
B.
Chen
,
P.
Li
,
G.
Zhao
,
F.
Yang
,
J.
Qiao
, and
P. K.
Liaw
, “
Nanoscale serration and creep characteristics of Al0.5CoCrCuFeNi high-entropy alloys
,”
J. Alloys Compd.
752
,
464
475
(
2018
).
2.
Z.
Li
,
S.
Zhao
,
R. O.
Ritchie
, and
M. A.
Meyers
, “
Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys
,”
Prog. Mater. Sci.
102
,
296
345
(
2019
).
3.
B.
Cantor
, “
Multicomponent and high entropy alloys
,”
Entropy
16
,
4749
4768
(
2014
).
4.
Y.
Ye
,
Q.
Wang
,
J.
Lu
,
C.
Liu
, and
Y.
Yang
, “
High-entropy alloy: Challenges and prospects
,”
Mater. Today
19
,
349
362
(
2016
).
5.
E.
Pickering
and
N.
Jones
, “
High-entropy alloys: A critical assessment of their founding principles and future prospects
,”
Int. Mater. Rev.
61
,
183
202
(
2016
).
6.
E.
George
,
W.
Curtin
, and
C. C.
Tasan
, “
High entropy alloys: A focused review of mechanical properties and deformation mechanisms
,”
Acta Mater.
188
,
435
474
(
2019
).
7.
B.
Gludovatz
,
A.
Hohenwarter
,
K. V.
Thurston
,
H.
Bei
,
Z.
Wu
,
E. P.
George
, and
R. O.
Ritchie
, “
Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
,”
Nat. Commun.
7
,
10602
(
2016
).
8.
Z.
Zhang
,
H.
Sheng
,
Z.
Wang
,
B.
Gludovatz
,
Z.
Zhang
,
E. P.
George
,
Q.
Yu
,
S. X.
Mao
, and
R. O.
Ritchie
, “
Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy
,”
Nat. Commun.
8
,
14390
(
2017
).
9.
D.
Liu
,
Q.
Yu
,
S.
Kabra
,
M.
Jiang
,
P.
Forna-Kreutzer
,
R.
Zhang
,
M.
Payne
,
F.
Walsh
,
B.
Gludovatz
,
M.
Asta
et al, “
Exceptional fracture toughness of CrCoNi-based medium-and high-entropy alloys at 20 kelvin
,”
Science
378
,
978
983
(
2022
).
10.
H. S.
Oh
,
D.
Ma
,
G. P.
Leyson
,
B.
Grabowski
,
E. S.
Park
,
F.
Körmann
, and
D.
Raabe
, “
Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment
,”
Entropy
18
,
321
(
2016
).
11.
Y.
Zhao
,
Z.
Lei
,
Z.
Lu
,
J.
Huang
, and
T.
Nieh
, “
A simplified model connecting lattice distortion with friction stress of Nb-based equiatomic high-entropy alloys
,”
Mater. Res. Lett.
7
,
340
346
(
2019
).
12.
R.
Zhang
,
S.
Zhao
,
J.
Ding
,
Y.
Chong
,
T.
Jia
,
C.
Ophus
,
M.
Asta
,
R. O.
Ritchie
, and
A. M.
Minor
, “
Short-range order and its impact on the CrCoNi medium-entropy alloy
,”
Nature
581
,
283
287
(
2020
).
13.
X.
Chen
,
Q.
Wang
,
Z.
Cheng
,
M.
Zhu
,
H.
Zhou
,
P.
Jiang
,
L.
Zhou
,
Q.
Xue
,
F.
Yuan
,
J.
Zhu
,
W.
Xiaolei
, and
E.
Ma
, “
Direct observation of chemical short-range order in a medium-entropy alloy
,”
Nature
592
,
712
716
(
2021
).
14.
D. L.
Foley
,
A. K.
Barnett
,
Y.
Rakita
,
A.
Perez
,
P. P.
Das
,
S.
Nicolopoulos
,
D. E.
Spearot
,
I. J.
Beyerlein
,
M. L.
Falk
, and
M. L.
Taheri
, “
Diffuse electron scattering reveals kinetic frustration as origin of order in CoCrNi medium entropy alloy
,”
Acta Mater.
268
,
119753
(
2024
).
15.
Q.-J.
Li
,
H.
Sheng
, and
E.
Ma
, “
Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways
,”
Nat. Commun.
10
,
3563
(
2019
).
16.
S.
Mubassira
,
W.-R.
Jian
, and
S.
Xu
, “
Effects of chemical short-range order and temperature on basic structure parameters and stacking fault energies in multi-principal element alloys
,”
Modelling
5
,
352
366
(
2024
).
17.
A.
Gupta
,
W.-R.
Jian
,
S.
Xu
,
I. J.
Beyerlein
, and
G. J.
Tucker
, “
On the deformation behavior of CoCrNi medium entropy alloys: Unraveling mechanistic competition
,”
Int. J. Plast.
159
,
103442
(
2022
).
18.
G.
Huang
,
X.
Zhang
,
R.
Zhang
,
W.-R.
Jian
,
X.
Zou
,
K.
Wang
,
Z.
Xie
, and
X.
Yao
, “
The shear softening and dislocation glide competition due to the shear-induced short-range order degeneration in CoCrNi medium-entropy alloy
,”
J. Mater. Sci. Technol.
192
,
108
122
(
2024
).
19.
D.
Hua
,
Q.
Xia
,
W.
Wang
,
Q.
Zhou
,
S.
Li
,
D.
Qian
,
J.
Shi
, and
H.
Wang
, “
Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation
,”
Int. J. Plast.
142
,
102997
(
2021
).
20.
W.-R.
Jian
,
Z.
Xie
,
S.
Xu
,
Y.
Su
,
X.
Yao
, and
I. J.
Beyerlein
, “
Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi
,”
Acta Mater.
199
,
352
369
(
2020
).
21.
D.
Hua
,
X.
Liu
,
W.
Wang
,
Q.
Zhou
,
Q.
Xia
,
S.
Li
,
J.
Shi
, and
H.
Wang
, “
Formation mechanism of hierarchical twins in the CoCrNi medium entropy alloy
,”
J. Mater. Sci. Technol.
140
,
19
32
(
2023
).
22.
W.-R.
Jian
,
L.
Wang
,
W.
Bi
,
S.
Xu
, and
I. J.
Beyerlein
, “
Role of local chemical fluctuations in the melting of medium entropy alloy CoCrNi
,”
Appl. Phys. Lett.
119
,
121904
(
2021
).
23.
Z.
Xie
,
W.-R.
Jian
,
S.
Xu
,
I. J.
Beyerlein
,
X.
Zhang
,
Z.
Wang
, and
X.
Yao
, “
Role of local chemical fluctuations in the shock dynamics of medium entropy alloy CoCrNi
,”
Acta Mater.
221
,
117380
(
2021
).
24.
L.
Zhu
,
X.
Zhang
,
W.-R.
Jian
,
Z.
Xie
, and
X.
Yao
, “
Plastic deformation mechanism and defect patterning under nanoindentation in medium entropy alloy CoCrNi
,”
J. Alloys Compd.
968
,
171734
(
2023
).
25.
G.
Huang
,
X.
Zhang
,
Z.
Xie
,
W.-R.
Jian
,
R.
Zhang
, and
X.
Yao
, “
Effects of lattice distortion and chemical short-range order on creep behavior of medium-entropy alloy CoCrNi
,”
Mech. Mater.
177
,
104549
(
2023
).
26.
Z.
Xie
,
W.-R.
Jian
,
S.
Xu
,
I. J.
Beyerlein
,
X.
Zhang
,
X.
Yao
, and
R.
Zhang
, “
Phase transition in medium entropy alloy cocrni under quasi-isentropic compression
,”
Int. J. Plast.
157
,
103389
(
2022
).
27.
W.-R.
Jian
,
Z.
Xie
,
S.
Xu
,
X.
Yao
, and
I. J.
Beyerlein
, “
Shock-induced amorphization in medium entropy alloy CoCrNi
,”
Scr. Mater.
209
,
114379
(
2022
).
28.
H.
Wang
,
D.
Chen
,
X.
An
,
Y.
Zhang
,
S.
Sun
,
Y.
Tian
,
Z.
Zhang
,
A.
Wang
,
J.
Liu
,
M.
Song
et al, “
Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy
,”
Sci. Adv.
7
,
eabe3105
(
2021
).
29.
J.
Li
,
H.
Chen
,
Q.
He
,
Q.
Fang
,
B.
Liu
,
C.
Jiang
,
Y.
Liu
,
Y.
Yang
, and
P. K.
Liaw
, “
Unveiling the atomic-scale origins of high damage tolerance of single-crystal high entropy alloys
,”
Phys. Rev. Mater.
4
,
103612
(
2020
).
30.
D.
Farkas
, “
The role of compositional complexity in the increased fracture resistance of high entropy alloys: Multi-scale atomistic simulations
,”
Comput. Mater. Sci.
235
,
112758
(
2024
).
31.
X.
Zhu
,
F.
Cao
,
L.
Dai
, and
Y.
Chen
, “
Effects of chemical short-range order and lattice distortion on crack-tip behavior of medium-entropy alloy by atomistic simulations
,”
Metals
14
,
226
(
2024
).
32.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in 't Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
33.
F.-H.
Cao
,
Y.-J.
Wang
, and
L.-H.
Dai
, “
Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment
,”
Acta Mater.
194
,
283
294
(
2020
).
34.
I. A.
Alhafez
,
C. J.
Ruestes
,
S.
Zhao
,
A. M.
Minor
, and
H. M.
Urbassek
, “
Dislocation structures below a nano-indent of the CoCrNi medium-entropy alloy
,”
Mater. Lett.
283
,
128821
(
2020
).
35.
C.
Varvenne
,
A.
Luque
,
W. G.
Nöhring
, and
W. A.
Curtin
, “
Average-atom interatomic potential for random alloys
,”
Phys. Rev. B
93
,
104201
(
2016
).
36.
W.-R.
Jian
, “
CoCrNi A-atom potential
,” https://github.com/wrj2018/Acta_2020. Accessed: April 12, 2024.
37.
P. M.
Larsen
,
S.
Schmidt
, and
J.
Schiøtz
, “
Robust structural identification via polyhedral template matching
,”
Modell. Simul. Mater. Sci. Eng.
24
,
055007
(
2016
).
38.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
39.
S.
Xu
,
E.
Hwang
,
W.-R.
Jian
,
Y.
Su
, and
I. J.
Beyerlein
, “
Atomistic calculations of the generalized stacking fault energies in two refractory multi-principal element alloys
,”
Intermetallics
124
,
106844
(
2020
).
40.
Y. H.
Zhang
,
Y.
Zhuang
,
A.
Hu
,
J. J.
Kai
, and
C. T.
Liu
, “
The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys
,”
Scr. Mater.
130
,
96
99
(
2017
).
41.
D.
You
,
O. K.
Celebi
,
A. S. K.
Mohammed
, and
H.
Sehitoglu
, “
Negative stacking fault energy in FCC materials-Its implications
,”
Int. J. Plast.
170
,
103770
(
2023
).
42.
X. R.
Zhuo
,
J. H.
Kim
, and
H. G.
Beom
, “
Atomistic investigation of crack growth resistance in a single-crystal Al-nanoplate
,”
J. Mater. Res.
31
,
1185
(
2016
).
43.
P.
Andric
and
W.
Curtin
, “
New theory for crack-tip twinning in fcc metals
,”
J. Mech. Phys. Solids
113
,
144
161
(
2018
).
44.
P.
Andric
and
W.
Curtin
, “
New theory for Mode I crack-tip dislocation emission
,”
J. Mech. Phys. Solids
106
,
315
337
(
2017
).
45.
S.
Xu
,
L.
Xiong
,
Q.
Deng
, and
D. L.
McDowell
, “
Mesh refinement schemes for the concurrent atomistic-continuum method
,”
Int. J. Solids Struct.
90
,
144
152
(
2016
).
46.
J.
Li
,
Y.
Chen
,
Q.
He
,
X.
Xu
,
H.
Wang
,
C.
Jiang
,
B.
Liu
,
Q.
Fang
,
Y.
Liu
,
Y.
Yang
,
P. K.
Liaw
, and
C. T.
Liu
, “
Heterogeneous lattice strain strengthening in severely distorted crystalline solids
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2200607119
(
2022
).
47.
N.
Rasooli
,
W.
Chen
, and
M.
Daly
, “
Deformation mechanisms in high entropy alloys: A minireview of short-range order effects
,”
Nanoscale
16
,
1650
1663
(
2024
).
48.
X.
Zhao
,
C.
Lu
,
A. K.
Tieu
,
L.
Zhan
,
M.
Huang
,
L.
Su
,
L.
Pei
, and
L.
Zhang
, “
Deformation twinning and dislocation processes in nanotwinned copper by molecular dynamics simulations
,”
Comput. Mater. Sci.
142
,
59
71
(
2018
).
49.
T. L.
Dora
,
S. K.
Singh
,
R. R.
Mishra
,
E. R.
Homer
,
S.
Ogata
, and
A.
Verma
, “
Deformation and boundary motion analysis of a faceted twin grain boundary
,”
Int. J. Mech. Sci.
269
,
109044
(
2024
).
50.
Y.
Zheng
,
Q.
Li
,
J.
Zhang
,
H.
Ye
,
H.
Zhang
, and
L.
Shen
, “
Hetero interface and twin boundary mediated strengthening in nano-twinned Cu//Ag multilayered materials
,”
Nanotechnology
28
,
415705
(
2017
).
You do not currently have access to this content.