Marine oil spills have become a major global environmental challenge, yet there remains a lack of effective and environmentally friendly strategies for the remediation of water contaminated with high-viscosity oil. In this study, we introduce a superhydrophobic oleophilic material with photothermal properties for efficient absorption of viscous oil. Femtosecond laser treatment methodology is applied to cork (FSLA-cork), which exhibits not only superior hydrophobic and oleophilic properties but also the exceptional ability to be rapidly heated from ambient conditions to 58 °C in 10 s under 1.8 solar irradiation. Under solar irradiance, the FSLA-cork adsorbent functions synergistically by capillary absorption and centrifugal pumping. At one-sun intensity, an oil absorption rate of 4.02 g cm−2 within 200 s was observed. The high adsorption rates of FSLA-cork combined with the high availability of the raw material and its eco-friendly fabrication methods indicate that such methods and materials can be utilized for large-scale clean up of aqueous environments contaminated with high-viscosity oils.

1.
C. H.
Peterson
,
S. D.
Rice
,
J. W.
Short
,
D.
Esler
,
J. L.
Bodkin
,
B. E.
Ballachey
, and
D. B.
Irons
,
Science
302
,
2082
2086
(
2003
).
2.
I.-Y.
Chung
,
K.-J.
Cho
,
K.
Hiraoka
,
T.
Mukai
,
W.
Nishijima
,
K.
Takimoto
, and
M.
Okada
,
Mar. Pollut. Bull.
49
,
959
963
(
2004
).
3.
D.
Tang
,
J.
Sun
,
L.
Zhou
,
S.
Wang
,
R. P.
Singh
, and
G.
Pan
,
Geomatics, Nat. Hazards Risk
10
,
853
872
(
2019
).
4.
J. A.
Rusiecki
,
H.
Denic-Roberts
,
D. L.
Thomas
,
J.
Collen
,
J.
Barrett
,
K.
Christenbury
, and
L. S.
Engel
,
Environ. Res.
203
,
111824
(
2022
).
5.
B.
Dubansky
,
A.
Whitehead
,
J. T.
Miller
,
C. D.
Rice
, and
F.
Galvez
,
Environ. Sci. Technol.
47
,
5074
5082
(
2013
).
6.
Z.
Yang
,
Z.
Chen
,
K.
Lee
,
E.
Owens
,
M. C.
Boufadel
,
C.
An
, and
E.
Taylor
,
Mar. Pollut. Bull.
167
,
112313
(
2021
).
7.
D.
Motorin
,
H.
Roozbahani
, and
H.
Handroos
,
J. Environ. Manage.
318
,
115451
(
2022
).
8.
V.
Broje
and
A. A.
Keller
,
J. Hazard. Mater.
148
,
136
143
(
2007
).
9.
V.
Broje
and
A. A.
Keller
,
Environ. Sci. Technol.
40
,
7914
7918
(
2006
).
10.
Ş.
Kücük
,
C. A.
Hejase
,
I. S.
Kolesnyk
,
J. W.
Chew
, and
V. V.
Tarabara
,
J. Hazard. Mater.
412
,
124747
(
2021
).
11.
O.
Okoro
,
M.
Solliec
,
I.
Papineau
,
L.
Fradette
, and
B.
Barbeau
,
J. Environ. Chem. Eng.
9
,
106425
(
2021
).
12.
P.
Nawavimarn
,
W.
Rongsayamanont
,
T.
Subsanguan
, and
E.
Luepromchai
,
Environ. Pollut.
285
,
117378
(
2021
).
13.
C. N.
Nikolova
,
U. Z.
Ijaz
,
C.
Magill
,
S.
Kleindienst
,
S. B.
Joye
, and
T.
Gutierrez
,
Microbiome
9
(
1–17
),
191
(
2021
).
14.
Q.
Liu
,
H.
Chen
,
Y.
Su
,
S.
Sun
,
C.
Zhao
,
X.
Zhang
,
Y.
Gu
, and
L.
Li
,
Environ. Res.
223
,
115465
(
2023
).
15.
Q. X.
Lin
,
I. A.
Mendelssohn
,
K.
Carney
,
S. M.
Miles
,
N. P.
Bryner
, and
W. D.
Walton
,
Environ. Sci. Technol.
39
,
1855
1860
(
2005
).
16.
J.
Fritt-Rasmussen
,
S.
Wegeberg
,
P.
Lassen
,
L. B.
Wilms
,
L.
Renvald
,
M. B.
Larsen
,
O.
Geertz-Hansen
,
J.
Wiktor
, and
K.
Gustavson
,
J. Hazard. Mater.
441
,
129976
(
2023
).
17.
C. H.
Tang
and
E. J.
Buskey
,
Environ. Pollut.
315
,
120414
(
2022
).
18.
C. B.
Keller
,
H.
Kurita-Oyamada
,
S. M.
Grayson
, and
N. D.
Denslow
,
Environ. Sci. Technol.
56
,
7917
7923
(
2022
).
19.
X.
Li
,
Z.
Yang
,
Y.
Peng
,
F.
Zhang
,
M.
Lin
,
J.
Zhang
,
Q.
Lv
, and
Z.
Dong
,
ACS Appl. Mater. Interfaces
14
,
11789
11802
(
2022
).
20.
S.
Wu
,
S.
Tian
,
R.
Jian
,
T.-N.
Wu
,
T. D.
Milazzo
,
T.
Luo
, and
G.
Xiong
,
J. Mater. Chem. A
10
,
11651
11658
(
2022
).
21.
M. B.
Wu
,
S.
Huang
,
T. Y.
Liu
,
J.
Wu
,
S.
Agarwal
,
A.
Greiner
, and
Z. K.
Xu
,
Adv. Funct. Mater.
31
,
2006806
(
2020
).
22.
S.
Zhang
,
G.
Jiang
,
S.
Gao
,
H.
Jin
,
Y.
Zhu
,
F.
Zhang
, and
J.
Jin
,
ACS Nano
12
,
795
803
(
2018
).
23.
C.
Zhang
,
P.
Xiao
,
F.
Ni
,
L.
Yan
,
Q.
Liu
,
D.
Zhang
,
J.
Gu
,
W.
Wang
, and
T.
Chen
,
ACS Sustainable Chem. Eng.
8
,
5328
5337
(
2020
).
24.
Z.
Li
,
Q.
Tian
,
J.
Xu
,
S.
Sun
,
Y.
Cheng
,
F.
Qiu
, and
T.
Zhang
,
ACS Appl. Mater. Interfaces
13
,
51652
51660
(
2021
).
25.
J.
Ge
,
L.-A.
Shi
,
Y.-C.
Wang
,
H.-Y.
Zhao
,
H.-B.
Yao
,
Y.-B.
Zhu
,
Y.
Zhang
,
H.-W.
Zhu
,
H.-A.
Wu
, and
S.-H.
Yu
,
Nat. Nanotechnol.
12
,
434
440
(
2017
).
26.
Y.
Kuang
,
C.
Chen
,
G.
Chen
,
Y.
Pei
,
G.
Pastel
,
C.
Jia
,
J.
Song
,
R.
Mi
,
B.
Yang
,
S.
Das
, and
L.
Hu
,
Adv. Funct. Mater.
29
,
1900162
(
2019
).
27.
L.
Dong
,
J.
Li
,
D.
Zhang
,
X.
Chen
,
Y.
Guan
,
Z.
Wang
, and
Y.
Li
,
ACS Appl. Mater. Interfaces
15
,
37517
37529
(
2023
).
28.
Q.
Li
,
Q.
Sun
,
Y.
Li
,
T.
Wu
,
S.
Li
,
H.
Zhang
, and
F.
Huang
,
ACS Appl. Mater. Interfaces
12
,
19476
19482
(
2020
).
29.
J.
Yang
,
P.
Xu
,
Y.
Yao
,
Y.
Li
,
B.
Shi
,
X.
Jia
, and
H.
Song
,
Mater. Des.
195
,
108979
(
2020
).
30.
D.
Wan
,
H.
Liu
,
Y.
Wang
,
D.
Hu
, and
Z.
Gui
,
Opt. Laser Technol.
40
,
309
314
(
2008
).
31.
X.
Wang
,
L.
Zhang
,
J.
Fan
,
Y.
Li
,
Y.
Gong
,
L.
Dong
,
W.
Ma
,
W.
Yin
, and
S.
Jia
,
Plasma Sci. Technol.
17
,
914
918
(
2015
).
32.
T.
Curt
,
W.
Adra
, and
L.
Borgniet
,
For. Ecol. Manage.
258
,
2127
2135
(
2009
).
33.
D. C.
Dey
, For.
Science
60
,
926
942
(
2014
).
34.
Y.
Guo
,
Q.
Wang
,
H.
Li
,
Y.
Gao
,
X.
Xu
,
B.
Tang
,
Y.
Wang
,
B.
Yang
,
Y.-K.
Lee
,
P. J.
French
, and
G.
Zhou
,
ACS Nano
16
,
2910
2920
(
2022
).
35.
Y.
Lin
,
Q.
Zhang
,
Y.
Deng
,
K.
Shen
,
K.
Xu
,
Y.
Yu
,
S.
Wang
, and
G.
Fang
,
ACS Sustainable Chem. Eng.
9
,
3112
3123
(
2021
).
36.
C.
Wang
,
Z.
Zhao
,
R.
Wu
,
X.
Shi
,
G. F.
Payne
, and
X.
Wang
,
ACS Sustainable Chem. Eng.
11
,
9782
9791
(
2023
).
37.
L.
Zhu
,
X.
Li
,
T.
Kasuga
,
K.
Uetani
,
M.
Nogi
, and
H.
Koga
,
J. Mater. Chem. C
10
(
10
),
3712
3719
(
2022
).
38.
Y.
He
,
L.
Wang
,
T.
Wu
,
Z.
Zhu
,
Y.
Chen
, and
K.
Yin
,
Nanoscale
14
,
9392
9400
(
2022
).
39.
Y.
He
,
K.
Yin
,
L.
Wang
,
T.
Wu
,
Q.
Deng
,
Y.
Dou
, and
C. J.
Arnusch
,
Nano Lett.
23
,
4947
4955
(
2023
).
40.
K.
Yin
,
Z.
Wu
,
J.
Wu
,
Z.
Zhu
,
F.
Zhang
, and
J.-A.
Duan
,
Appl. Phys. Lett.
118
,
211905
(
2021
).
41.
X.
Wei
,
L.
Chen
,
Y.
Wang
,
Y.
Sun
,
C.
Ma
,
X.
Yang
,
S.
Jiang
, and
G.
Duan
,
Chem. Eng. J.
433
,
134258
(
2022
).
42.
T.
Wu
,
Z.
Wu
,
Y.
He
,
Z.
Zhu
,
L.
Wang
, and
K.
Yin
,
Chin. Opt. Lett.
20
,
033801
(
2022
).
43.
Z.
Xie
,
H.
Wang
,
M.
Li
,
Y.
Tian
,
Q.
Deng
,
R.
Chen
,
X.
Zhu
, and
Q.
Liao
,
Chem. Eng. J.
435
,
135025
(
2022
).
44.
M.
Chao
,
P.
Di
,
Y.
Yuan
,
Y.
Xu
,
L.
Zhang
, and
P.
Wan
,
Nano Energy
108
,
108201
(
2023
).
45.
C.
Lv
,
X.
Bai
,
S.
Ning
,
C.
Song
,
Q.
Guan
,
B.
Liu
,
Y.
Li
, and
J.
Ye
,
ACS Nano
17
,
1725
1738
(
2023
).
46.
J.
Pei
,
K.
Yin
,
T.
Wu
,
L.
Wang
,
Q.
Deng
,
Y.
Huang
,
K.
Wang
, and
C. J.
Arnusch
,
Nanoscale
15
,
15708
15716
(
2023
).
47.
M. H.
Siddique
,
S. A. I.
Bellary
,
A.
Samad
,
J.-H.
Kim
, and
Y.-S.
Choi
,
Arab. J. Sci. Eng.
42
,
4605
4615
(
2017
).
48.
Z.
Liu
,
L.
Zou
,
J.
Qiao
,
C.
Shi
, and
X.
Liu
,
Measurement
197
,
111285
(
2022
).
49.
S.
Yang
,
Z.
Zhu
,
Z.
Wu
,
J.
Wu
, and
K.
Yin
,
Appl. Phys. Lett.
117
,
213701
(
2020
).
50.
Q.
Huang
,
K.
Yin
,
L.
Wang
,
Q.
Deng
, and
C. J.
Arnusch
,
Nanoscale
15
,
11247
11254
(
2023
).
51.
J.
Wu
,
K.
Yin
,
M.
Li
,
Z.
Wu
,
S.
Xiao
,
H.
Wang
,
J.-A.
Duan
, and
J.
He
,
Nanoscale
12
,
4077
4084
(
2020
).
52.
W.
Weng
,
Q.
Deng
,
P.
Yang
, and
K.
Yin
,
J. Cent. South Univ.
31
,
1
10
(
2024
).
53.
L.
Wang
,
K.
Yin
,
Q.
Deng
,
Q.
huang
,
J.
He
, and
J.-A.
Duan
,
Adv. Sci.
9
,
2204891
(
2022
).
54.
F.
Zhang
,
C.
Xu
,
K.
Yin
, and
J.-A.
Duan
,
Opt. Lett.
45
,
6707
6710
(
2020
).

Supplementary Material

You do not currently have access to this content.