Mechanoluminescence (ML) refers to the photon emission from materials subjected to mechanical stimuli. A general concept concerning ML materials is that they cannot directly record a stress history (mechanical record; MR). Here, we report an approach that retrieves a quantitative recording of stress history through the afterglow characteristics analysis of a specific multi-piezo ML material Li0.12Na0.88NbO3:Pr (LNNO), which has been designated to exist near the structural phase boundary of rhombohedral R3c and orthorhombic P21ma. Contrary to the general expectation that the afterglow characteristics are irrelevant to mechanical loading history, LNNO was strongly correlated with the stress distribution after UV excitation. This enabled us to read the recorded stress precisely from the afterglow image of the material. Furthermore, the spatial distribution of the MR was also realized, showing the capability of the readout of stress history in both time and space. This unusual MR function is attributed to eliminating shallow trap sites, which affected the afterglow characteristics upon applying mechanical load.

1.
J. C.
Zhang
,
X.
Wang
,
G.
Marriott
, and
C. N.
Xu
, “
Trap-controlled mechanoluminescent materials
,”
Prog. Mater. Sci.
103
,
678
742
(
2019
).
2.
D.
Tu
,
C. N.
Xu
,
S.
Kamimura
,
Y.
Horibe
,
H.
Oshiro
,
L.
Zhang
,
Y.
Ishii
,
K.
Hyodo
,
G.
Marriott
,
N.
Ueno
, and
X. G.
Zheng
, “
Ferroelectric Sr3Sn2O7:Nd3+: A new multipiezo material with ultrasensitive and sustainable near-infrared piezoluminescence
,”
Adv. Mater.
32
(
25
),
1908083
(
2020
).
3.
S.
Timilsina
,
K. H.
Lee
,
I. Y.
Jang
, and
J. S.
Kim
, “
Mechanoluminescent determination of the mode I stress intensity factor in SrAl2O4:Eu2+,Dy3+
,”
Acta Mater.
61
(
19
),
7197
7206
(
2013
).
4.
S.
Kamimura
,
H.
Yamada
, and
C. N.
Xu
, “
Development of new elasticoluminescent material SrMg2(PO4)2:Eu
,”
J. Lumin.
132
(
2
),
526
530
(
2012
).
5.
C. N.
Xu
,
T.
Watanabe
,
M.
Akiyama
, and
X. G.
Zheng
, “
Direct view of stress distribution in solid by mechanoluminescence
,”
Appl. Phys. Lett.
74
(
17
),
2414
2416
(
1999
).
6.
C. N.
Xu
,
T.
Watanabe
,
M.
Akiyama
, and
X. G.
Zheng
, “
Artificial skin to sense mechanical stress by visible light emission
,”
Appl. Phys. Lett.
74
(
9
),
1236
1238
(
1999
).
7.
C. N.
Xu
,
H.
Yamada
,
X.
Wang
, and
X. G.
Zheng
, “
Strong elasticoluminescence from monoclinic-structure SrAl2O4
,”
Appl. Phys. Lett.
84
(
16
),
3040
3042
(
2004
).
8.
Z.
Wang
,
Y.
Xiao
,
B.
Liu
,
K.
Chen
,
P.
Shao
,
Z.
Chen
,
P.
Xiong
,
J.
Gan
, and
D.
Chen
, “
Stress-induced multi-stimulus-responsive mechanoluminescence in Mn2+ doped double perovskite compound
,”
Adv. Opt. Mater.
12
(
5
),
2301796
(
2024
).
9.
X.
Wang
,
C. N.
Xu
,
H.
Yamada
,
K.
Nishikubo
, and
X. G.
Zheng
, “
Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics
,”
Adv. Mater.
17
(
10
),
1254
1258
(
2005
).
10.
T.
Zhan
,
C. N.
Xu
,
O.
Fukuda
,
H.
Yamada
, and
C.
Li
, “
Direct visualization of ultrasonic power distribution using mechanoluminescent film
,”
Ultrason. Sonochem.
18
(
1
),
436
439
(
2011
).
11.
X.
Wang
,
H.
Zhang
,
R.
Yu
,
L.
Dong
,
D.
Peng
,
A.
Zhang
,
Y.
Zhang
,
H.
Liu
,
C.
Pan
, and
Z. L.
Wang
, “
Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process
,”
Adv. Mater.
27
(
14
),
2324
2331
(
2015
).
12.
L.
Liu
,
C. N.
Xu
,
A.
Yoshida
,
D.
Tu
,
N.
Ueno
, and
S.
Kainuma
, “
Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis
,”
Adv. Mater. Technol.
4
(
1
),
1800336
(
2019
).
13.
S. M.
Jeong
,
S.
Song
,
K. I.
Joo
,
J.
Kim
,
S. H.
Hwang
,
J.
Jeong
, and
H.
Kim
, “
Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer
,”
Energy Environ. Sci.
7
(
10
),
3338
3346
(
2014
).
14.
X.
Qian
,
Z.
Cai
,
M.
Su
,
F.
Li
,
W.
Fang
,
Y.
Li
,
X.
Zhou
,
Q.
Li
,
X.
Feng
,
W.
Li
,
X.
Hu
,
X.
Wang
,
C.
Pan
, and
Y.
Song
, “
Printable skin-driven mechanoluminescence devices via nanodoped matrix modification
,”
Adv. Mater.
30
(
25
),
1800291
(
2018
).
15.
S.
Jiang
,
X.
Wu
,
F.
Yang
,
N. J.
Rommelfanger
, and
G.
Hong
, “
Activation of mechanoluminescent nanotransducers by focused ultrasound enables light delivery to deep-seated tissue in vivo
,”
Nat. Protoc.
18
,
3787
(
2023
).
16.
F.
Lin
,
X.
Li
,
C.
Chen
,
X.
Pan
,
D.
Peng
,
H.
Luo
,
L.
Jin
,
Y.
Zhuang
, and
R. J.
Xie
, “
Modeling polyhedron distortion for mechanoluminescence in mixed-anion compounds RE2O2S:Ln3+
,”
Chem. Mater.
34
(
11
),
5311
5319
(
2022
).
17.
Y. L.
Yang
,
X. C.
Yang
,
J. Y.
Yuan
,
T.
Li
,
Y. T.
Fan
,
L.
Wang
,
Z.
Deng
,
Q. L.
Li
,
D. Y.
Wan
,
J. T.
Zhao
, and
Z. J.
Zhang
, “
Time-resolved bright red to cyan color tunable mechanoluminescence from CaZnOS: Bi3+, Mn2+ for anti-counterfeiting device and stress sensor
,”
Adv. Opt. Mater.
9
(
16
),
2100668
(
2021
).
18.
Y.
Ding
,
B.
So
,
J.
Cao
,
F.
Langenhorst
, and
L.
Wondraczek
, “
Light delivery, acoustic read-out, and optical thermometry using ultrasound-induced mechanoluminescence and the near-infrared persistent luminescence of CaZnOS:Nd3+
,”
Adv. Opt. Mater.
11
(
17
),
2300331
(
2023
).
19.
N.
Zhang
,
B.
Tian
,
Z.
Wang
,
A. T.
Smith
,
Z.
Ma
,
Z.
Xue
, and
L.
Sun
, “
Intense mechanoluminescence in undoped LiGa5O8 with persistent and recoverable behaviors
,”
Adv. Opt. Mater.
9
(
13
),
2100137
(
2021
).
20.
B.
Xiao
,
P.
Xiong
,
S.
Wu
,
D.
Jiang
,
K.
Chen
,
Y.
Xiao
,
P.
Shao
, and
Y.
Wang
, “
Multicolor mechanoluminescence in Sr2Ga2GeO7: Pr3+ for stress sensing and anticounterfeiting
,”
Adv. Opt. Mater.
11
(
22
),
2300911
(
2023
).
21.
Y.
Fujio
,
C. N.
Xu
,
Y.
Terasawa
,
Y.
Sakata
,
J.
Yamabe
,
N.
Ueno
,
N.
Terasaki
,
A.
Yoshida
,
S.
Watanabe
, and
Y.
Murakami
, “
Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel
,”
Int. J. Hydrogen Energy
41
(
2
),
1333
1340
(
2016
).
22.
C.
Chen
,
Z.
Lin
,
H.
Huang
,
X.
Pan
,
T. L.
Zhou
,
H.
Luo
,
L.
Jin
,
D.
Peng
,
J.
Xu
,
Y.
Zhuang
, and
R. J.
Xie
, “
Revealing the intrinsic decay of mechanoluminescence for achieving ultrafast-response stress sensing
,”
Adv. Funct. Mater.
33
(
46
),
2304917
(
2023
).
23.
M. C.
Wong
,
L.
Chen
,
G.
Bai
,
L. B.
Huang
, and
J.
Hao
, “
Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field
,”
Adv. Mater.
29
(
43
),
1701945
(
2017
).
24.
Y.
Zhuang
,
L.
Wang
,
Y.
Lv
,
T. L.
Zhou
, and
R. J.
Xie
, “
Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials
,”
Adv. Funct. Mater.
28
(
8
),
1705769
(
2018
).
25.
N.
Terasaki
and
C. N.
Xu
, “
Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor
,”
IEEE Sens. J.
13
(
10
),
3999
4004
(
2013
).
26.
Y.
Zhuang
,
D.
Tu
,
C.
Chen
,
L.
Wang
,
H.
Zhang
,
H.
Xue
,
C.
Yuan
,
G.
Chen
,
C.
Pan
,
L.
Dai
, and
R. J.
Xie
, “
Force-induced charge carrier storage: A new route for stress recording
,”
Light Sci. Appl.
9
(
1
),
182
(
2020
).
27.
R. R.
Petit
,
S. E.
Michels
,
A.
Feng
, and
P. F.
Smet
, “
Adding memory to pressure-sensitive phosphors
,”
Light Sci. Appl.
8
(
1
),
124
(
2019
).
28.
H.
Hara
,
C.-N.
Xu
,
R.
Wang
,
X.-G.
Zheng
,
M.
Nishibori
, and
E.
Nishibori
, “
Control of crystal structure and performance evaluation of multi-piezo material of Li1−xNaxNbO3:Pr3+
,”
J. Ceram. Soc. Jpn.
128
(
8
),
518
522
(
2020
).
29.
D.
Tu
,
C. N.
Xu
,
A.
Yoshida
,
M.
Fujihala
,
J.
Hirotsu
, and
X. G.
Zheng
, “
LiNbO3:Pr3+: A multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence
,”
Adv. Mater.
29
(
22
),
1606914
(
2017
).
30.
H.
Kasai
,
J.
Liu
,
C. N.
Xu
, and
E.
Nishibori
, “
Synchrotron X-ray powder diffraction under high pressures up to 33 MPa for mechanoresponsive materials
,”
J. Synchrotron Radiat.
30
(
Pt 3
),
555
560
(
2023
).
31.
J.
Xu
,
D.
Murata
,
J.
Ueda
,
B.
Viana
, and
S.
Tanabe
, “
Toward rechargeable persistent luminescence for the first and third biological windows via persistent energy transfer and electron trap redistribution
,”
Inorg. Chem.
57
(
9
),
5194
5203
(
2018
).
32.
S. K.
Sharma
,
D.
Gourier
,
E.
Teston
,
D.
Scherman
,
C.
Richard
, and
B.
Viana
, “
Persistent luminescence induced by near infra-red photostimulation in chromium-doped zinc gallate for in vivo optical imaging
,”
Opt. Mater.
63
,
51
58
(
2017
).
33.
F.
Liu
,
W.
Yan
,
Y. J.
Chuang
,
Z.
Zhen
,
J.
Xie
, and
Z.
Pan
, “
Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8
,”
Sci. Rep.
3
,
1554
(
2013
).

Supplementary Material

You do not currently have access to this content.