Here, we report the results of strain-controlled spin-wave propagation regimes in a double-period multiferroic structure. It consists of an alligator-type magnonic crystal with a period of 250 μm and a piezoelectric layer, featuring a periodic counter-pin-type electrode system with a period of 125 μm. Employing microwave measurements, we acquired the transmission and dispersion of spin waves under various external electric field configurations applied to the piezoelectric layer. The formation of bandgaps in the magnon spectrum and the variation of the spin-wave transmission when altering the configurations of the external electric field are demonstrated. A finite element method reveals that the combination of the non-uniformity in the initial internal magnetic field of the magnonic crystal, which is caused by the presence of periodic alligator-type regions, together with elastic deformations, heightens the amplitude of the modulation of the internal magnetic field. Micromagnetic modeling has demonstrated that this modulation enhancement results in the variation of the spin-wave transmission at the frequency of the magnonic bandgap center of the magnonic crystal. The proposed design of the reconfigurable magnonic crystal creates a condition for the nucleation of the spin-wave bandgap, with further enhancement of the spin-wave reflection from the periodic grating induced by strain. We demonstrate the potential use of the proposed device as a multi-band NAND/NXOR spin-wave based logic gate.

1.
A.
Barman
,
G.
Gubbiotti
,
S.
Ladak
,
A. O.
Adeyeye
,
M.
Krawczyk
,
J.
Gräfe
,
C.
Adelmann
,
S.
Cotofana
,
A.
Naeemi
,
V. I.
Vasyuchka
et al, “
The 2021 magnonics roadmap
,”
J. Phys.: Condens. Matter
33
,
413001
(
2021
).
2.
B. Z.
Rameshti
,
S. V.
Kusminskiy
,
J. A.
Haigh
,
K.
Usami
,
D.
Lachance-Quirion
,
Y.
Nakamura
,
C.-M.
Hu
,
H. X.
Tang
,
G. E.
Bauer
, and
Y. M.
Blanter
, “
Cavity magnonics
,”
Phys. Rep.
979
,
1
61
(
2022
).
3.
B.
Flebus
,
S.
Rezende
,
D.
Grundler
, and
A.
Barman
, “
Recent advances in magnonics
,”
J. Appl. Phys.
133
,
160401
(
2023
).
4.
X.
Wang
,
H.
Zhang
, and
X.
Wang
, “
Topological magnonics: A paradigm for spin-wave manipulation and device design
,”
Phys. Rev. Appl.
9
,
024029
(
2018
).
5.
P.
Pirro
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
, “
Advances in coherent magnonics
,”
Nat. Rev. Mater.
6
,
1114
1135
(
2021
).
6.
A. V.
Chumak
,
P.
Kabos
,
M.
Wu
,
C.
Abert
,
C.
Adelmann
,
A.
Adeyeye
,
J.
Åkerman
,
F. G.
Aliev
,
A.
Anane
,
A.
Awad
et al, “
Advances in magnetics roadmap on spin-wave computing
,”
IEEE Trans. Magn.
58
,
1
72
(
2022
).
7.
A.
Litvinenko
,
R.
Khymyn
,
V. H.
González
,
R.
Ovcharov
,
A. A.
Awad
,
V.
Tyberkevych
,
A.
Slavin
, and
J.
Åkerman
, “
A spinwave Ising machine
,”
Commun. Phys.
6
,
227
(
2023
).
8.
A. N.
Mahmoud
,
F.
Vanderveken
,
C.
Adelmann
,
F.
Ciubotaru
,
S.
Hamdioui
, and
S.
Cotofana
, “
Multifrequency data parallel spin wave logic gates
,”
IEEE Trans. Magn.
57
,
1
12
(
2021
).
9.
A.
Lara
,
J.
Robledo Moreno
,
K. Y.
Guslienko
, and
F. G.
Aliev
, “
Information processing in patterned magnetic nanostructures with edge spin waves
,”
Sci. Rep.
7
,
5597
(
2017
).
10.
J.
Han
,
P.
Zhang
,
J. T.
Hou
,
S. A.
Siddiqui
, and
L.
Liu
, “
Mutual control of coherent spin waves and magnetic domain walls in a magnonic device
,”
Science
366
,
1121
1125
(
2019
).
11.
C.
Liu
,
J.
Chen
,
T.
Liu
,
F.
Heimbach
,
H.
Yu
,
Y.
Xiao
,
J.
Hu
,
M.
Liu
,
H.
Chang
,
T.
Stueckler
et al, “
Long-distance propagation of short-wavelength spin waves
,”
Nat. Commun.
9
,
738
(
2018
).
12.
Q.
Wang
,
A. V.
Chumak
, and
P.
Pirro
, “
Inverse-design magnonic devices
,”
Nat. Commun.
12
,
2636
(
2021
).
13.
Q.
Wang
,
A.
Hamadeh
,
R.
Verba
,
V.
Lomakin
,
M.
Mohseni
,
B.
Hillebrands
,
A. V.
Chumak
, and
P.
Pirro
, “
A nonlinear magnonic nano-ring resonator
,”
NPJ Comput. Mater.
6
,
192
(
2020
).
14.
B.
Rana
and
Y.
Otani
, “
Towards magnonic devices based on voltage-controlled magnetic anisotropy
,”
Commun. Phys.
2
,
90
(
2019
).
15.
K.
Zakeri
, “
Magnonic crystals: Towards terahertz frequencies
,”
J. Phys.: Condens. Matter
32
,
363001
(
2020
).
16.
R. A.
Patil
,
C.-W.
Su
,
C.-J.
Chuang
,
C.-C.
Lai
,
Y.
Liou
, and
Y.-R.
Ma
, “
Terahertz spin-wave waveguides and optical magnonics in one-dimensional NiO nanorods
,”
Nanoscale
8
,
12970
12976
(
2016
).
17.
J.
Hortensius
,
D.
Afanasiev
,
M.
Matthiesen
,
R.
Leenders
,
R.
Citro
,
A.
Kimel
,
R.
Mikhaylovskiy
,
B.
Ivanov
, and
A.
Caviglia
, “
Coherent spin-wave transport in an antiferromagnet
,”
Nat. Phys.
17
,
1001
1006
(
2021
).
18.
A.
Haldar
and
A. O.
Adeyeye
, “
Reconfigurable and self-biased magnonic metamaterials
,”
J. Appl. Phys.
128
,
240902
(
2020
).
19.
A.
Grachev
,
S.
Sheshukova
,
M.
Kostylev
,
S.
Nikitov
, and
A.
Sadovnikov
, “
Reconfigurable dipolar spin-wave coupling in a bilateral yttrium iron garnet structure
,”
Phys. Rev. Appl.
19
,
054089
(
2023
).
20.
A. A.
Grachev
,
A. V.
Sadovnikov
, and
S. A.
Nikitov
, “
Strain-tuned spin-wave interference in micro-and nanoscale magnonic interferometers
,”
Nanomaterials
12
,
1520
(
2022
).
21.
V.
Tikhonov
and
A.
Litvinenko
, “
Spin-wave diagnostics of the magnetization distribution over the thickness of a ferrite film
,”
Appl. Phys. Lett.
115
,
072410
(
2019
).
22.
V.
Tikhonov
and
A.
Litvinenko
, “
Exchange spin waves and their application for diagnostics of the layered structure of epitaxial YIG films
,”
J. Magn. Magn. Mater.
515
,
167241
(
2020
).
23.
A.
Litvinenko
,
S.
Grishin
,
Y. P.
Sharaevskii
,
V.
Tikhonov
, and
S.
Nikitov
, “
A chaotic magnetoacoustic oscillator with delay and bistability
,”
Tech. Phys. Lett.
44
,
263
266
(
2018
).
24.
S.
Nikitov
,
P.
Tailhades
, and
C.
Tsai
, “
Spin waves in periodic magnetic structures-magnonic crystals
,”
J. Magn. Magn. Mater.
236
,
320
330
(
2001
).
25.
M.
Krawczyk
and
D.
Grundler
, “
Review and prospects of magnonic crystals and devices with reprogrammable band structure
,”
J. Phys.: Condens. Matter
26
,
123202
(
2014
).
26.
A.
Chumak
,
A.
Serga
, and
B.
Hillebrands
, “
Magnonic crystals for data processing
,”
J. Phys. D: Appl. Phys.
50
,
244001
(
2017
).
27.
S.
Tacchi
,
J.
Flores-Farías
,
D.
Petti
,
F.
Brevis
,
A.
Cattoni
,
G.
Scaramuzzi
,
D.
Girardi
,
D.
Cortés-Ortuño
,
R. A.
Gallardo
,
E.
Albisetti
et al, “
Experimental observation of flat bands in one-dimensional chiral magnonic crystals
,”
Nano Lett.
23
,
6776
(
2023
).
28.
L.
Ji
,
R.
Zhao
,
X.
Hu
,
C.
Hu
,
X.
Shen
,
X.
Liu
,
X.
Zhao
,
J.
Zhang
,
W.
Chen
, and
X.
Zhang
, “
Reconfigurable ferromagnetic resonances by engineering inhomogeneous magnetic textures in artificial magnonic crystals
,”
Adv. Funct. Mater.
32
,
2112956
(
2022
).
29.
H.
Merbouche
,
I.
Boventer
,
V.
Haspot
,
S.
Fusil
,
V.
Garcia
,
D.
Gouéré
,
C.
Carrétéro
,
A.
Vecchiola
,
R.
Lebrun
,
P.
Bortolotti
et al, “
Voltage-controlled reconfigurable magnonic crystal at the sub-micrometer scale
,”
ACS Nano
15
,
9775
9781
(
2021
).
30.
J. W.
Kłos
,
M.
Krawczyk
,
Y. S.
Dadoenkova
,
N.
Dadoenkova
, and
I.
Lyubchanskii
, “
Photonic-magnonic crystals: Multifunctional periodic structures for magnonic and photonic applications
,”
J. Appl. Phys.
115
,
174311
(
2014
).
31.
Y. S.
Dadoenkova
,
N.
Dadoenkova
,
I.
Lyubchanskii
,
J. W.
Kłos
, and
M.
Krawczyk
, “
Confined states in photonic-magnonic crystals with complex unit cell
,”
J. Appl. Phys.
120
,
073903
(
2016
).
32.
M.
Morozova
,
O.
Matveev
,
Y. P.
Sharaevskii
,
S.
Nikitov
, and
A.
Sadovnikov
, “
Nonlinear signal processing with magnonic superlattice with two periods
,”
Appl. Phys. Lett.
120
,
122407
(
2022
).
33.
S.
Vysotskii
,
Y. V.
Khivintsev
,
Y. A.
Filimonov
,
S.
Nikitov
,
A.
Stognii
, and
N.
Novitskii
, “
Surface spin waves in one-dimensional magnonic crystals with two spatial periods
,”
Tech. Phys. Lett.
41
,
1099
1102
(
2015
).
34.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
Wiley
,
2004
).
35.
K.-S.
Lee
,
D.-S.
Han
, and
S.-K.
Kim
, “
Physical origin and generic control of magnonic band gaps of dipole-exchange spin waves in width-modulated nanostrip waveguides
,”
Phys. Rev. Lett.
102
,
127202
(
2009
).
36.
A. A.
Nikitin
,
A. B.
Ustinov
,
A. A.
Semenov
,
A. V.
Chumak
,
A. A.
Serga
,
V. I.
Vasyuchka
,
E.
Lähderanta
,
B. A.
Kalinikos
, and
B.
Hillebrands
, “
A spin-wave logic gate based on a width-modulated dynamic magnonic crystal
,”
Appl. Phys. Lett.
106
,
102405
(
2015
).
37.
P.
Frey
,
A. A.
Nikitin
,
D. A.
Bozhko
,
S. A.
Bunyaev
,
G. N.
Kakazei
,
A. B.
Ustinov
,
B. A.
Kalinikos
,
F.
Ciubotaru
,
A. V.
Chumak
,
Q.
Wang
et al, “
Reflection-less width-modulated magnonic crystal
,”
Commun. Phys.
3
,
17
(
2020
).
38.
W.
Tang
,
Z.-w.
Zhou
,
Y.-z.
Nie
,
Q.-l.
Xia
,
Z.-m.
Zeng
, and
G.-h.
Guo
, “
Spin wave modes of width modulated Ni80Fe20/Pt nanostrip detected by spin-orbit torque induced ferromagnetic resonance
,”
Appl. Phys. Lett.
111
,
172407
(
2017
).
39.
J.
Chen
,
H.
Wang
,
T.
Hula
,
C.
Liu
,
S.
Liu
,
T.
Liu
,
H.
Jia
,
Q.
Song
,
C.
Guo
,
Y.
Zhang
et al, “
Reconfigurable spin-wave interferometer at the nanoscale
,”
Nano Lett.
21
,
6237
6244
(
2021
).
40.
G.
Talmelli
,
T.
Devolder
,
N.
Träger
,
J.
Förster
,
S.
Wintz
,
M.
Weigand
,
H.
Stoll
,
M.
Heyns
,
G.
Schütz
,
I. P.
Radu
et al, “
Reconfigurable submicrometer spin-wave majority gate with electrical transducers
,”
Sci. Adv.
6
,
eabb4042
(
2020
).
41.
B.
Rana
and
Y.
Otani
, “
Voltage-controlled reconfigurable spin-wave nanochannels and logic devices
,”
Phys. Rev. Appl.
9
,
014033
(
2018
).
42.
P. K.
Pal
,
S.
Sahoo
,
K.
Dutta
,
A.
Barman
,
S.
Barman
, and
Y.
Otani
, “
Thickness-dependent reconfigurable spin-wave dynamics in Ni80Fe20 nanostripe arrays
,”
Adv. Mater. Interfaces
9
,
2201333
(
2022
).
43.
J. C.
Gartside
,
K. D.
Stenning
,
A.
Vanstone
,
H. H.
Holder
,
D. M.
Arroo
,
T.
Dion
,
F.
Caravelli
,
H.
Kurebayashi
, and
W. R.
Branford
, “
Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting
,”
Nat. Nanotechnol.
17
,
460
469
(
2022
).
44.
I.
Vidamour
,
C.
Swindells
,
G.
Venkat
,
L.
Manneschi
,
P.
Fry
,
A.
Welbourne
,
R.
Rowan-Robinson
,
D.
Backes
,
F.
Maccherozzi
,
S.
Dhesi
et al, “
Reconfigurable reservoir computing in a magnetic metamaterial
,”
Commun. Phys.
6
,
230
(
2023
).
45.
A.
Grachev
,
S.
Odintsov
,
E.
Beginin
, and
A.
Sadovnikov
, “
Nonreciprocal spin-wave transport in an asymmetric three-dimensional magnonic coupler
,”
Phys. Rev. Appl.
21
,
024031
(
2024
).
46.
A.
Liu
and
A. M.
Finkel'stein
, “
Control of spin waves by spatially modulated strain
,”
Phys. Rev. B
105
,
L020404
(
2022
).
47.
Z.
Zhang
,
E.
Liu
,
X.
Lu
,
W.
Zhang
,
Y.
You
,
G.
Xu
,
Z.
Xu
,
P. K. J.
Wong
,
Y.
Wang
,
B.
Liu
et al, “
Strain-controlled spin wave excitation and Gilbert damping in flexible Co2FeSi films activated by femtosecond laser pulse
,”
Adv. Funct. Mater.
31
,
2007211
(
2021
).
48.
C.
Chen
,
A.
Barra
,
A.
Mal
,
G.
Carman
, and
A.
Sepulveda
, “
Voltage induced mechanical/spin wave propagation over long distances
,”
Appl. Phys. Lett.
110
,
072401
(
2017
).
49.
M.
Vogel
,
A. V.
Chumak
,
E. H.
Waller
,
T.
Langner
,
V. I.
Vasyuchka
,
B.
Hillebrands
, and
G.
Von Freymann
, “
Optically reconfigurable magnetic materials
,”
Nat. Phys.
11
,
487
491
(
2015
).
50.
A. A.
Nikitin
,
A. E.
Komlev
,
A. A.
Nikitin
,
A. B.
Ustinov
, and
E.
Lähderanta
, “
Dynamic magnonic crystals based on vanadium dioxide gratings
,”
Phys. Rev. Appl.
20
,
044026
(
2023
).
51.
H.
Wang
,
Y.
Yang
,
J.
Chen
,
J.
Wang
,
H.
Jia
,
P.
Chen
,
Y.
Zhang
,
C.
Wan
,
S.
Liu
,
D.
Yu
et al, “
Long-distance coherent propagation of magnon polarons in a ferroelectric-ferromagnetic heterostructure
,”
Phys. Rev. B
108
,
144425
(
2023
).
52.
A.
Sadovnikov
,
A.
Grachev
,
E.
Beginin
,
S.
Sheshukova
,
Y. P.
Sharaevskii
, and
S.
Nikitov
, “
Voltage-controlled spin-wave coupling in adjacent ferromagnetic-ferroelectric heterostructures
,”
Phys. Rev. Appl.
7
,
014013
(
2017
).
53.
CJSC NII, “Materialovedenie,” Zelinograd, Russia. Magnetostriction constants for YIG: λ 010 = 1.4 × 10 6 , λ 111 = 2.4 × 10 6, and saturation magnetostriction λ s = 2.2 × 10 6.
54.
PI Ceramic GmbH, Lederhose, Germany. Density ρ = 7.8 g / cm 3, relative permittivity ε = 2400, relative permeability μ = 1, piezoelectric voltage coefficient d 31 = 210 × 10 12 C / N, and d 33 = 500 × 10 12 C / N.
55.
A.
Sadovnikov
,
A.
Grachev
,
S.
Sheshukova
,
Y. P.
Sharaevskii
,
A.
Serdobintsev
,
D.
Mitin
, and
S.
Nikitov
, “
Magnon straintronics: Reconfigurable spin-wave routing in strain-controlled bilateral magnetic stripes
,”
Phys. Rev. Lett.
120
,
257203
(
2018
).
56.
S. E.
Sheshukova
,
E. N.
Beginin
,
A. V.
Sadovnikov
,
Y. P.
Sharaevsky
, and
S. A.
Nikitov
, “
Multimode propagation of magnetostatic waves in a width-modulated yttrium-iron-garnet waveguide
,”
IEEE Magn. Lett.
5
,
1
4
(
2014
).
57.
Calculated using the COMSOL Multiphysics software from COMSOL, Inc.
58.
G.
Srinivasan
,
S.
Priya
, and
N.
Sun
,
Composite Magneto-Electrics Materials, Structures, and Applications
(
Woodhead
,
2015
).
59.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of mumax3
,”
AIP Adv.
4
,
107133
(
2014
).
60.
H.-J.
Zhao
,
T.-L.
Ren
,
N.-X.
Zhang
,
R.-Z.
Zuo
,
X.-H.
Wang
,
L.-T.
Liu
,
Z.-J.
Li
,
Z.-L.
Gui
, and
L.-T.
Li
, “
High-frequency properties of PZT for RF-communication applications
,”
Mater. Sci. Eng. B
99
,
192
194
(
2003
).
61.
C. R.
Kelley
and
J. L.
Kauffman
, “
Optimal switch timing for piezoelectric-based semi-active vibration reduction techniques
,”
J. Intell. Mater. Syst. Struct.
28
,
2275
2285
(
2017
).
You do not currently have access to this content.