The theory of special relativity is one of the most significant achievements in modern physics, with several important predictions such as time dilation, size contraction for a moving object, and mass-energy equivalence. Recent studies have demonstrated size contraction for an antiferromagnetic (AFM) domain wall (DW). Here, we show the excitation of terahertz (THz) magnons from a moving AFM DW under the magnetic anisotropy energy gradient. The energy of magnons comes from the loss of the effective DW mass due to the reduction in anisotropy energy. Also, the excitation of THz magnons is accompanied by a DW width broadening, overcoming the Lorentz contraction effect. Our results pave the way to study relativistic physics in AFM textures and to efficiently generate THz magnons by DC electric means.

1.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
,
T.
Ono
, and
Y.
Tserkovnyak
,
Rev. Mod. Phys.
90
,
015005
(
2018
).
2.
G.
Tatara
,
C. A.
Akosa
, and
R. M.
Otxoa de Zuazola
,
Phys. Rev. Res.
2
,
043226
(
2020
).
3.
I. M.
Alliati
,
R. F. L.
Evans
,
K. S.
Novoselov
, and
E. J. G.
Santos
,
npj Comput. Mater.
8
,
3
(
2022
).
4.
B. F.
Ferguson
and
X.-C.
Zhang
,
Nat. Mater.
1
,
26
(
2002
).
5.
J.
Walowski
and
M.
Münzenberg
,
J. Appl. Phys.
120
,
140901
(
2016
).
6.
Z.
Feng
,
H.
Qiu
,
D.
Wang
,
C.
Zhang
,
S.
Sun
,
B.
Jin
, and
W.
Tan
,
J. Appl. Phys.
129
,
010901
(
2021
).
7.
A.
Kirilyuk
,
A. V.
Kimel
, and
T.
Rasing
,
Rev. Mod. Phys.
82
,
2731
(
2010
).
8.
X. S.
Wang
,
P.
Yan
,
Y. H.
Shen
,
G. E.
Bauer
, and
X. R.
Wang
,
Phys. Rev. Lett.
109
,
167209
(
2012
).
9.
M.
Yan
,
C.
Andreas
,
A.
Kákay
,
F.
García-Sánchez
, and
R.
Hertel
,
Appl. Phys. Lett.
99
,
122505
(
2011
).
10.
X. P.
Ma
,
J.
Zheng
,
H. G.
Piao
,
D. H.
Kim
, and
P.
Fisher
,
Appl. Phys. Lett.
117
,
062402
(
2020
).
11.
W.
Yu
,
J.
Lan
, and
J.
Xiao
,
Phys. Rev. B
98
,
144422
(
2018
).
12.
E. G.
Tveten
,
A.
Qaiumzadeh
, and
A.
Brataas
,
Phys. Rev. Lett.
112
,
147204
(
2014
).
13.
T.
Shiino
,
S. H.
Oh
,
P. M.
Haney
,
S. W.
Lee
,
G.
Go
,
B. G.
Park
, and
K. J.
Lee
,
Phys. Rev. Lett.
117
,
087203
(
2016
).
14.
L.
Sánchez-Tejerina
,
V.
Puliafito
,
P.
Khalili Amiri
,
M.
Carpentieri
, and
G.
Finocchio
,
Phys. Rev. B
101
,
014433
(
2020
).
15.
H. Y.
Yuan
,
W.
Wang
,
M.-H.
Yung
, and
X. R.
Wang
,
Phys. Rev. B
97
,
214434
(
2018
).
16.
O.
Gomonay
,
T.
Jungwirth
, and
J.
Sinova
,
Phys. Rev. Lett.
117
,
017202
(
2016
).
17.
H.
Yang
,
H. Y.
Yuan
,
M.
Yan
,
H. W.
Zhang
, and
P.
Yan
,
Phys. Rev. B
100
,
024407
(
2019
).
18.
D. L.
Wen
,
Z. Y.
Chen
,
W. H.
Li
,
M. H.
Qin
,
D. Y.
Chen
,
Z.
Fan
,
M.
Zeng
,
X. B.
Lu
,
X. S.
Gao
, and
J.-M.
Liu
,
Phys. Rev. Res.
2
,
013166
(
2020
).
19.
P.
Shen
,
Y.
Tserkovnyak
, and
S. K.
Kim
,
J. Appl. Phys.
127
,
223905
(
2020
).
20.
R.
Yanes
,
M. R.
Rosa
, and
L.
Lopez-Diaz
,
Phys. Rev. B
102
,
134424
(
2020
).
21.
I.
Gray
,
T.
Moriyama
,
N.
Sivadas
,
G. M.
Stiehl
,
J. T.
Heron
,
R.
Need
,
B. J.
Kirby
,
D. H.
Low
,
K. C.
Nowack
,
D. G.
Schlom
,
D. C.
Ralph
,
T.
Ono
, and
G. D.
Fuchs
,
Phys. Rev. X
9
,
041016
(
2019
).
22.
F.
Schreiber
,
L.
Baldrati
,
C.
Schmitt
,
R.
Ramos
,
E.
Saitoh
,
R.
Lebrun
, and
M.
Kläui
,
Appl. Phys. Lett.
117
,
082401
(
2020
).
23.
S.-H.
Oh
,
S. K.
Kim
,
D.-K.
Lee
,
G.
Go
,
K.-J.
Kim
,
T.
Ono
,
Y.
Tserkovnyak
, and
K.-J.
Lee
,
Phys. Rev. B
96
,
100407(R)
(
2017
).
24.
L.
Caretta
,
S. H.
Oh
,
T.
Fakhrul
,
D. K.
Lee
,
B. H.
Lee
,
S. K.
Kim
,
C. A.
Ross
,
K. J.
Lee
, and
G. S.
Beach
,
Science
370
,
1438
(
2020
).
25.
W.
Pauli
,
Theory of Relativity
(
Pergamon Press
,
1958
).
26.
Y.
Zhang
,
S.
Luo
,
X.
Yang
, and
C.
Yang
,
Sci. Rep.
7
,
2047
(
2017
).
27.
K.
Yamada
,
S.
Murayama
, and
Y.
Nakatani
,
Appl. Phys. Lett.
108
,
202405
(
2016
).
28.
L.
Chen
,
M.
Shen
,
Y.
Peng
,
X.
Liu
,
W.
Luo
,
X.
Yang
,
L.
You
, and
Y.
Zhang
,
J. Phys. D: Appl. Phys.
52
,
495001
(
2019
).
29.
W. H.
Li
,
Z.
Jin
,
D. L.
Wen
,
X. M.
Zhang
,
M. H.
Qin
, and
J.-M.
Liu
,
Phys. Rev. B
101
,
024414
(
2020
).
30.
C.
Ma
,
X.
Zhang
,
J.
Xia
,
M.
Ezawa
,
W.
Jiang
,
T.
Ono
,
S. N.
Piramanayagam
,
A.
Morisako
,
Y.
Zhou
, and
X.
Liu
,
Nano Lett.
19
,
353
(
2019
).
31.
S. K.
Kim
,
Y.
Tserkovnyak
, and
O.
Tchernyshyov
,
Phys. Rev. B
90
,
104406
(
2014
).
32.
M.
Liu
,
O.
Obi
,
J.
Lou
,
Y.
Chen
,
Z.
Cai
,
S.
Stoute
,
M.
Espanol
,
M.
Lew
,
X.
Situ
,
K. S.
Ziemer
,
V. G.
Harris
, and
N. X.
Sun
,
Adv. Funct. Mater.
19
,
1826
(
2009
).
33.
E. G.
Tveten
,
T.
Müller
,
J.
Linder
, and
A.
Brataas
,
Phys. Rev. B
93
,
104408
(
2016
).
34.
F.
Chen
,
Z.
Zhang
,
W.
Luo
,
X.
Yang
,
L.
You
, and
Y.
Zhang
,
J. Magn. Magn. Mater.
511
,
166995
(
2020
).
35.
Y.
Yamane
,
O.
Gomonay
, and
J.
Sinova
,
Phys. Rev. B
100
,
054415
(
2019
).
36.
For the case of in-plane magnetic anisotropy (IMA), the azimuthal angle ϕ is defined within the y-z plane, and the walker ansatz for DW can be expressed as n = cos θ , sin θ cos ϕ , sin θ sin ϕ with θ the polar angle. Then, the walker ansatz is inserted into Eq. (2) in the same manner as the case with PMA. We easily notice that the result of Eq. (3) has the same form as that of PMA. Therefore, mass-energy equivalence is also applicable to antiferromagnets with IMA.
37.
R.
Wieser
,
E. Y.
Vedmedenko
, and
R.
Wiesendanger
,
Phys. Rev. B
79
,
144412
(
2009
).
38.
E. G.
Tveten
,
A.
Qaiumzadeh
,
O. A.
Tretiakov
, and
A.
Brataas
,
Phys. Rev. Lett.
110
,
127208
(
2013
).
39.
V.
Saidl
,
P.
Němec
,
P.
Wadley
,
V.
Hills
,
R. P.
Campion
,
V.
Novák
,
K. W.
Edmonds
,
F.
Maccherozzi
,
S. S.
Dhesi
,
B. L.
Gallagher
,
F.
Trojánek
,
J.
Kuneš
,
J.
Železný
,
P.
Malý
, and
T.
Jungwirth
,
Nat. Photonics
11
,
91
(
2017
).
40.
P.
Němec
,
M.
Fiebig
,
T.
Kampfrath
, and
A. V.
Kimel
,
Nat. Phys.
14
,
229
(
2018
).
41.
H. C.
Zhao
,
H.
Xia
,
S.
Hu
,
Y. Y.
Lv
,
Z. R.
Zhao
,
J.
He
,
E.
Liang
,
G.
Ni
,
L. Y.
Chen
,
X. P.
Qiu
,
S. M.
Zhou
, and
H. B.
Zhao
,
Nat. Commun.
12
,
5266
(
2021
).
42.
S.-J.
Lee
,
D.-K.
Lee
, and
K.-J.
Lee
,
Phys. Rev. B
101
,
064422
(
2020
).

Supplementary Material

You do not currently have access to this content.