N incorporation mechanisms in GaAs1−xNx alloys are probed using combined experimental and computational Rutherford backscattering spectrometry and nuclear reaction analysis angular yield scans. For xN < 0.025, in addition to substitutional nitrogen, NAs, (N-N)As, and (N-As)As split-interstitials are observed. However, for xN ≥ 0.025, evidence for N tetrahedral interstitials, Ntetra, emerges. We propose a mechanism for stabilization of Ntetra in which the elastic interaction between Ntetra and NAs is induced by the opposite signs of their misfit volumes. This work opens opportunities for exploring the formation of Ntetra and its influence on the properties of a variety of highly mismatched alloys.
REFERENCES
1.
W. G.
Bi
and
C. W.
Tu
, “
Bowing parameter of the band-gap energy of GaNxAs1−x
,” Appl. Phys. Lett.
70
, 1608
(1997
).2.
W.
Shan
,
W.
Walukiewicz
,
J. W.
Ager
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
,
J. M.
Olson
, and
S. R.
Kurtz
, “
Band anticrossing in GaInNAs alloys
,” Phys. Rev. Lett.
82
, 1221
(1999
).3.
E. P.
O'Reilly
,
A.
Lindsay
,
P. J.
Klar
,
A.
Polimeni
, and
M.
Capizzi
, “
Trends in the electronic structure of dilute nitride alloys
,” Semicond. Sci. Technol.
24
, 033001
(2009
).4.
W.
Żuraw
,
W. M.
Linhart
,
J.
Occena
,
T.
Jen
,
J. W.
Mitchell
,
R. S.
Goldman
, and
R.
Kudrawiec
, “
Temperature-dependent study of GaAs1−x−yNxBiy alloys for band-gap engineering: Photoreflectance and k · p modeling
,” Appl. Phys. Express
13
, 091005
(2020
).5.
T.
Taliercio
,
R.
Intartaglia
,
B.
Gil
,
P.
Lefebvre
,
T.
Bretagnon
,
U.
Tisch
,
E.
Finkman
,
J.
Salzman
,
M.-A.
Pinault
,
M.
Laügt
, and
E.
Tournié
, “
From GaAs:N to oversaturated GaAsN: Analysis of the band-gap reduction
,” Phys. Rev. B
69
, 073303
(2004
).6.
J.
Occena
,
T.
Jen
,
J. W.
Mitchell
,
W. M.
Linhart
,
E.-M.
Pavelescu
,
R.
Kudrawiec
,
Y. Q.
Wang
, and
R. S.
Goldman
, “
Mapping the composition-dependence of the energy bandgap of GaAsNBi alloys
,” Appl. Phys. Lett.
115
, 082106
(2019
).7.
M.
Gębski
,
D.
Dontsova
,
N.
Haghighi
,
K.
Nunna
,
R.
Yanka
,
A.
Johnson
,
R.
Pelzel
, and
J. A.
Lott
, “
Baseline 1300 nm dilute nitride VCSELs
,” OSA Contin.
3
, 1952
(2020
).8.
H.
Riechert
,
A.
Ramakrishnan
, and
G.
Steinle
, “
Development of InGaAsN-based 1.3 μm VCSELs
,” Semicond. Sci. Technol.
17
, 892
(2002
).9.
A.
Albo
,
D.
Fekete
, and
G.
Bahir
, “
The opportunity of using InGaAsN/AlGaAs quantum wells for extended short-wavelength infrared photodetection
,” Infrared Phys. Technol.
96
, 68
(2019
).10.
B.
Ściana
,
I.
Zborowska-Lindert
,
D.
Pucicki
,
B.
Boratyński
,
D.
Radziewicz
,
M.
Tłaczała
,
J.
Serafińczuk
,
P.
Poloczek
,
G.
Sęk
, and
J.
Misiewicz
, “
Technology and characterisation of GaAsN/GaAs heterostructures for photodetector applications
,” Opto-Electron. Rev.
16
(1
), 1
–7
(2008
).11.
K.
Yamane
,
Y.
Maki
,
S.
One
,
A.
Wakahara
,
E.-M.
Pavelescu
,
T.
Ohshima
,
T.
Nakamura
, and
M.
Imaizumi
, “
Mechanism of improved crystallinity by defect-modification in proton-irradiated GaAsPN photovoltaics: Experimental and first-principle calculations approach
,” J. Appl. Phys.
132
, 065701
(2022
).12.
H.
Kawata
,
S.
Hasegawa
,
J.
Matsumura
,
H.
Nishinaka
, and
M.
Yoshimoto
, “
Fabrication of a GaAs/GaNAsBi solar cell and its performance improvement by thermal annealing
,” Semicond. Sci. Technol.
36
, 095020
(2021
).13.
S.
Fahy
,
A.
Lindsay
,
H.
Ouerdane
, and
E. P.
O'Reilly
, “
Alloy scattering of n-type carriers in GaNxAs1−x
,” Phys. Rev. B
74
, 035203
(2006
).14.
E.-M.
Pavelescu
,
O.
Ligor
,
J.
Occena
,
C.
Ticoş
,
A.
Matei
,
R. L.
Gavrilă
,
K.
Yamane
,
A.
Wakahara
, and
R. S.
Goldman
, “
Influence of electron irradiation and rapid thermal annealing on photoluminescence from GaAsNBi alloys
,” Appl. Phys. Lett.
117
, 142106
(2020
).15.
F.
Ishikawa
,
K.
Higashi
,
S.
Fuyuno
,
M.
Morifuji
,
M.
Kondow
, and
A.
Trampert
, “
Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure
,” Sci. Rep.
8
, 5962
(2018
).16.
K.
Laaksonen
,
H.-P.
Komsa
,
T. T.
Rantala
, and
R. M.
Nieminen
, “
Nitrogen interstitial defects in GaAs
,” J. Phys.: Condens. Matter
20
, 235231
(2008
).17.
E.
Arola
,
J.
Ojanen
,
H.-P.
Komsa
, and
T. T.
Rantala
, “
Atomic and electronic structures of N interstitials in GaAs
,” Phys. Rev. B
72
, 045222
(2005
).18.
J. D.
Querales-Flores
,
C. I.
Ventura
, and
J. D.
Fuhr
, “
Effect of N interstitial complexes on the electronic properties of GaAs1−xNx alloys from first principles
,” Phys. Rev. Mater.
3
, 024602
(2019
).19.
J.
Li
,
X.
Han
,
C.
Dong
, and
C.
Fan
, “
Formation energies of substitutional NAs and split interstitial complexes in dilute GaAsN alloys with different growth orientations
,” Appl. Phys. A
124
, 108
(2018
).20.
N.
Shtinkov
,
P.
Desjardins
,
R. A.
Masut
, and
M.
Côté
, “
Nitrogen incorporation and lattice constant of strained dilute GaAs1−xNx layers on GaAs (001): An ab initio study
,” Phys. Rev. B
74
, 035211
(2006
).21.
T.
Jen
,
G.
Vardar
,
Y. Q.
Wang
, and
R. S.
Goldman
, “
Identifying the dominant interstitial complex in dilute GaAsN alloys
,” Appl. Phys. Lett.
107
, 221904
(2015
).22.
M.
Reason
,
H. A.
McKay
,
W.
Ye
,
S.
Hanson
,
R. S.
Goldman
, and
V.
Rotberg
, “
Mechanisms of nitrogen incorporation in GaAsN alloys
,” Appl. Phys. Lett.
85
, 1692
(2004
).23.
J.
Occena
,
T.
Jen
,
E. E.
Rizzi
,
T. M.
Johnson
,
J.
Horwath
,
Y. Q.
Wang
, and
R. S.
Goldman
, “
Bi-enhanced N incorporation in GaAsNBi alloys
,” Appl. Phys. Lett.
110
, 242102
(2017
).24.
M. C.
López-Escalante
,
B.
Ściana
,
W.
Dawidowski
,
K.
Bielak
, and
M.
Gabás
, “
Atomic configurations in AP-MOVPE grown lattice-mismatched InGaAsN films unravelled by X-ray photoelectron spectroscopy combined with bulk and surface characterization techniques
,” Appl. Surf. Sci.
433
, 1
–9
(2018
).25.
R. L.
Field
,
Y.
Jin
,
H.
Cheng
,
T.
Dannecker
,
R. M.
Jock
,
Y. Q.
Wang
,
C.
Kurdak
, and
R. S.
Goldman
, “
Influence of N incorporation on persistent photoconductivity in GaAsN alloys
,” Phys. Rev. B
87
, 155303
(2013
).26.
T.
Ahlgren
,
E.
Vainonen-Ahlgren
,
J.
Likonen
,
W.
Li
, and
M.
Pessa
, “
Concentration of interstitial and substitutional nitrogen in GaNxAs1−x
,” Appl. Phys. Lett.
80
, 2314
(2002
).27.
M.
Mayer
, SIMNRA User's Guide
(
Max-Planck-Institut für Plasmaphysik
,
Garching
, 1997
).28.
J. F.
Ziegler
and
J. P.
Biersack
, in Treatise on Heavy-Ion Science
, Astrophysics, Chemistry, and Condensed Matter Vol.
6
, edited by
D. A.
Bromley
(
Springer US
,
Boston, MA
, 1985
), pp. 93
–129
.29.
D.
Wijesundera
, “
Ion-beam channeling in non-centrosymmetric crystals
,” Ph.D. thesis (
University of Houston
, 2010
).30.
D. N.
Wijesundera
,
Q.
Chen
,
K. B.
Ma
,
X.
Wang
,
B.
Tilakaratne
, and
W.-K.
Chu
, “
Planar channeling in Wurtzite structured ZnO (0001): Anisotropic effects due to the non-centrosymmetric structure
,” Nucl. Instrum. Methods Phys. Res. Sect. B
281
, 77
(2012
).31.
T.
Jen
, “
Ion beam analysis of solute incorporation in GaAsN and GaAsNBi alloys
,” Ph.D. thesis (
University of Michigan
, 2017
).32.
S.
Takamoto
,
C.
Shinagawa
,
D.
Motoki
,
K.
Nakago
,
W.
Li
,
I.
Kurata
,
T.
Watanabe
,
Y.
Yayama
,
H.
Iriguchi
,
Y.
Asano
,
T.
Onodera
,
T.
Ishii
,
T.
Kudo
,
H.
Ono
,
R.
Sawada
,
R.
Ishitani
,
M.
Ong
,
T.
Yamaguchi
,
T.
Kataoka
,
A.
Hayashi
,
N.
Charoenphakdee
, and
T.
Ibuka
, “
Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements
,” Nat. Commun.
13
, 2991
(2022
).33.
S.
Takamoto
,
D.
Okanohara
,
Q.-J.
Li
, and
J.
Li
, “
Towards universal neural network interatomic potential
,” J. Materiomics
9
, 447
(2023
).34.
Matlantis,
see https://matlantis.com/ for “
Software as a service style material discovery tool
” (2023
).35.
J.
Nakata
,
M.
Taniguchi
, and
K.
Takahei
, “
Direct evidence of Er atoms occupying an interstitial site in metalorganic chemical vapor deposition‐grown GaAs:Er
,” Appl. Phys. Lett.
61
, 2665
(1992
).36.
H.
Kobayashi
,
K.
Kimura
,
F.
Nishiyama
,
S.
Miwa
, and
T.
Yao
, “
Lattice location of N in ZnSe by channeling-NRA
,” Nucl. Instrum. Methods Phys. Res. Sect. B
132
, 142
(1997
).37.
W.-K.
Chu
,
J. W.
Mayer
,
M.-A.
Nicolet
, and
M.-A.
Nicolet
, in Backscattering Spectrometry
, edited by
W.-K.
Chu
and
J. W.
Mayer
(
Academic Press
, 1978
), pp. 223
–275
.38.
H.
Krause
,
M.
Lux
,
E.
Nowak
,
J.
Vogt
,
R.
Flagmeyer
,
G.
Kühn
, and
G.
Otto
, “
Lattice site localization of Zn in InP using the PIXE/channeling technique
,” Phys. Status Solidi A
132
, 295
(1992
).39.
J. M.
Ziman
, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems
(
Cambridge University Press
,
Cambridge, New York
, 1979
), pp. 472
–474
.40.
P.-G.
Reinhard
and
E.
Suraud
, Introduction to Cluster Dynamics
(
John Wiley & Sons, Ltd.
, 2003
), pp. 259
–266
.41.
A.
Carvalho
,
S. J.
Barker
,
R.
Jones
,
R. S.
Williams
,
M. J.
Ashwin
,
R. C.
Newman
,
P. N.
Stavrinou
,
G.
Parry
,
T. S.
Jones
,
S.
Öberg
, and
P. R.
Briddon
, “
Identification of the local vibrational modes of small nitrogen clusters in dilute GaAsN
,” Physica B
401–402
, 339
(2007
).42.
P.
Laukkanen
,
M. P. J.
Punkkinen
,
J.
Puustinen
,
H.
Levämäki
,
M.
Tuominen
,
K.
Schulte
,
J.
Dahl
,
J.
Lång
,
H. L.
Zhang
,
M.
Kuzmin
,
K.
Palotas
,
B.
Johansson
,
L.
Vitos
,
M.
Guina
, and
K.
Kokko
, “
Formation and destabilization of Ga interstitials in GaAsN: Experiment and theory
,” Phys. Rev. B
86
, 195205
(2012
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.