Two-dimensional intrinsic magnetic topological materials that can realize device miniaturization have attracted significant attention recently based on their chiral dissipationless edge states. However, since the experimental observation of quantum anomalous Hall effect (QAHE) is still limited by low temperature, high operating temperature and large nontrivial gap are urgently needed. Here, monolayer MnAsO3 is predicted to be a room-temperature intrinsic magnetic topological material with high Chern number C = 3 based on first-principles calculations, which offers the possibility of achieving high-speed and low-energy-consumption electron transport in the future. Furthermore, the large and experimental feasible nontrivial gap up to 79.09 meV is obtained under compressive strain modulation. Moreover, the high-Chern-number topological phase transition and strain-induced spin-unlocked edge states are observed, indicating the possibility of tuning the electron transport of QAHE. All these findings suggest that monolayer MnAsO3 is a suitable and promising material for fabricating low-energy-consumption spintronics devices.

1.
K. V.
Klitzing
,
G.
Dorda
, and
M.
Pepper
, “
New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance
,”
Phys. Rev. Lett.
45
,
494
(
1980
).
2.
B. I.
Halperin
, “
Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential
,”
Phys. Rev. B
25
,
2185
(
1982
).
3.
D. C.
Tsui
,
H. L.
Stormer
, and
A. C.
Gossard
, “
Two-dimensional magnetotransport in the extreme quantum limit
,”
Phys. Rev. Lett.
48
,
1559
(
1982
).
4.
F. D. M.
Haldane
, “
Model for a quantum Hall effect without landau levels: Condensed-matter realization of the “parity anomaly
,””
Phys. Rev. Lett.
61
,
2015
(
1988
).
5.
H.
Jiang
,
Z.
Qiao
,
H.
Liu
, and
Q.
Niu
, “
Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film
,”
Phys. Rev. B
85
,
045445
(
2012
).
6.
S.
Oh
, “
The complete quantum Hall trio
,”
Science
340
,
153
154
(
2013
).
7.
B. A.
Bernevig
,
C.
Felser
, and
H.
Beidenkopf
, “
Progress and prospects in magnetic topological materials
,”
Nature
603
,
41
51
(
2022
).
8.
G.
Fiori
,
F.
Bonaccorso
,
G.
Iannaccone
,
T.
Palacios
,
D.
Neumaier
,
A.
Seabaugh
,
S. K.
Banerjee
, and
L.
Colombo
, “
Electronics based on two-dimensional materials
,”
Nat. Nanotechnol.
9
,
768
779
(
2014
).
9.
G. R.
Bhimanapati
,
Z.
Lin
,
V.
Meunier
,
Y.
Jung
,
J.
Cha
,
S.
Das
,
D.
Xiao
,
Y.
Son
,
M. S.
Strano
,
V. R.
Cooper
,
L.
Liang
,
S. G.
Louie
,
E.
Ringe
,
W.
Zhou
,
S. S.
Kim
,
R. R.
Naik
,
B. G.
Sumpter
,
H.
Terrones
,
F.
Xia
,
Y.
Wang
,
J.
Zhu
,
D.
Akinwande
,
N.
Alem
,
J. A.
Schuller
,
R. E.
Schaak
,
M.
Terrones
, and
J. A.
Robinson
, “
Recent advances in two-dimensional materials beyond graphene
,”
ACS Nano
9
,
11509
11539
(
2015
).
10.
R. J.
Sun
,
R.
Liu
,
J. J.
Lu
,
X. W.
Zhao
,
G. C.
Hu
,
X. B.
Yuan
, and
J. F.
Ren
, “
Reversible switching of anomalous valley Hall effect in ferrovalley Janus 1T-CrOX (X = F, Cl, Br, I) and the multiferroic heterostructure CrOX/In2Se3
,”
Phys. Rev. B
105
,
235416
(
2022
).
11.
J. J.
Lu
,
R.
Liu
,
F. F.
Yue
,
X. W.
Zhao
,
G. C.
Hu
,
X. B.
Yuan
, and
J. F.
Ren
, “
Enhanced intrinsic anomalous valley Hall effect induced by spin-orbit coupling in MXene monolayer M3N2O2 (M = Y, La)
,”
J. Phys. Chem. Lett.
14
,
132
138
(
2023
).
12.
X.
Feng
,
Y.
Xu
,
K.
He
, and
Q. K.
Xue
, “
Introduction to topological quantum materials
,”
Physics
51
,
624
632
(
2022
) (in Chinese).
13.
C. Z.
Chang
,
C. X.
Liu
, and
A. H.
MacDonald
, “
Colloquium: Quantum anomalous Hall effect
,”
Rev. Mod. Phys.
95
,
011002
(
2023
).
14.
J.
Li
,
Y.
Li
,
S.
Du
,
Z.
Wang
,
B. L.
Gu
,
S. C.
Zhang
,
K.
He
,
W.
Duan
, and
Y.
Xu
, “
Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials
,”
Sci. Adv.
5
,
eaaw5685
(
2019
).
15.
M. M.
Otrokov
,
I. P.
Rusinov
,
M.
Blanco-Rey
,
M.
Hoffmann
,
A.
Vyazovskaya
,
S. V.
Eremeev
,
A.
Ernst
,
P. M.
Echenique
,
A.
Arnau
, and
E. V.
Chulkov
, “
Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films
,”
Phys. Rev. Lett.
122
,
107202
(
2019
).
16.
E.
Liu
,
Y.
Sun
,
N.
Kumar
,
L.
Muechler
,
A.
Sun
,
L.
Jiao
,
S. Y.
Yang
,
D.
Liu
,
A.
Liang
,
Q.
Xu
,
J.
Kroder
,
V.
Süß
,
H.
Borrmann
,
C.
Shekhar
,
Z.
Wang
,
C.
Xi
,
W.
Wang
,
W.
Schnelle
,
S.
Wirth
,
Y.
Chen
,
S. T. B.
Goennenwein
, and
C.
Felser
, “
Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal
,”
Nat. Phys.
14
,
1125
1131
(
2018
).
17.
Z.
Zhang
,
J. Y.
You
,
X. Y.
Ma
,
B.
Gu
, and
G.
Su
, “
Kagome quantum anomalous Hall effect with high Chern number and large band gap
,”
Phys. Rev. B
103
,
014410
(
2021
).
18.
Z.
Li
,
Y.
Han
, and
Z.
Qiao
, “
Chern number tunable quantum anomalous Hall effect in monolayer transitional metal oxides via manipulating magnetization orientation
,”
Phys. Rev. Lett.
129
,
036801
(
2022
).
19.
X.
Fang
,
B.
Zhou
,
X.
Wang
, and
W.
Mi
, “
High Curie temperature and large perpendicular magnetic anisotropy in two-dimensional half metallic OsI3 monolayer with quantum anomalous Hall effect
,”
Mater. Today Phys.
28
,
100847
(
2022
).
20.
R.
Yu
,
W.
Zhang
,
H. J.
Zhang
,
S. C.
Zhang
,
X.
Dai
, and
Z.
Fang
, “
Quantized anomalous Hall effect in magnetic topological insulators
,”
Science
329
,
61
64
(
2010
).
21.
X.
Kou
,
S. T.
Guo
,
Y.
Fan
,
L.
Pan
,
M.
Lang
,
Y.
Jiang
,
Q.
Shao
,
T.
Nie
,
K.
Murata
,
J.
Tang
,
Y.
Wang
,
L.
He
,
T. K.
Lee
,
W. L.
Lee
, and
K. L.
Wang
, “
Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit
,”
Phys. Rev. Lett.
113
,
137201
(
2014
).
22.
C.
Chang
,
J.
Zhang
,
X.
Feng
,
J.
Shen
,
Z.
Zhang
,
M.
Guo
,
K.
Li
,
Y.
Ou
,
P.
Wei
,
L.
Wang
,
Z.
Ji
,
Y.
Feng
,
S.
Ji
,
X.
Chen
,
J.
Jia
,
X.
Dai
,
Z.
Fang
,
S.
Zhang
,
K.
He
,
Y.
Wang
,
L.
Lu
,
X.
Ma
, and
Q.
Xue
, “
Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator
,”
Science
340
,
167
170
(
2013
).
23.
C.
Chang
,
W.
Zhao
,
D. Y.
Kim
,
H.
Zhang
,
B. A.
Assaf
,
D.
Heiman
,
S.
Zhang
,
C.
Liu
,
M. H. W.
Chan
, and
J. S.
Moodera
, “
High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator
,”
Nat. Mater.
14
,
473
477
(
2015
).
24.
R.
Watanabe
,
R.
Yoshimi
,
M.
Kawamura
,
M.
Mogi
,
A.
Tsukazaki
,
X. Z.
Yu
,
K.
Nakajima
,
K. S.
Takahashi
,
M.
Kawasaki
, and
Y.
Tokura
, “
Quantum anomalous Hall effect driven by magnetic proximity coupling in all-telluride based heterostructure
,”
Appl. Phys. Lett.
115
,
102403
(
2019
).
25.
Y.
Deng
,
Y.
Yu
,
M. Z.
Shi
,
Z.
Guo
,
Z.
Xu
,
J.
Wang
,
X. H.
Chen
, and
Y.
Zhang
, “
Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4
,”
Science
367
,
895
900
(
2020
).
26.
M.
Serlin
,
C. L.
Tschirhart
,
H.
Polshyn
,
Y.
Zhang
,
J.
Zhu
,
K.
Watanabe
,
T.
Taniguchi
,
L.
Balents
, and
A. F.
Young
, “
Intrinsic quantized anomalous Hall effect in a moiré heterostructure
,”
Science
367
,
900
903
(
2020
).
27.
T.
Li
,
S.
Jiang
,
B.
Shen
,
Y.
Zhang
,
L.
Li
,
Z.
Tao
,
T.
Devakul
,
K.
Watanabe
,
T.
Taniguchi
,
L.
Fu
,
J.
Shan
, and
K. F.
Mak
, “
Quantum anomalous Hall effect from intertwined moiré bands
,”
Nature
600
,
641
646
(
2021
).
28.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
29.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
30.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
31.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
32.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
,”
Phys. Rev. B
57
,
1505
(
1998
).
35.
F.
Aryasetiawan
,
K.
Karlsson
,
O.
Jepsen
, and
U.
Schonberger
, “
Calculations of Hubbard U from first-principles
,”
Phys. Rev. B
74
,
125106
(
2006
).
36.
J.
Li
,
Q.
Yao
,
L.
Wu
,
Z.
Hu
,
B.
Gao
,
X.
Wan
, and
Q.
Liu
, “
Designing light-element materials with large effective spin-orbit coupling
,”
Nat. Commun.
13
,
919
(
2022
).
37.
H.
Chen
,
R.
Liu
,
J.
Lu
,
X.
Zhao
,
G.
Hu
,
J.
Ren
, and
X.
Yuan
, “
Intrinsic valley-polarized quantum anomalous Hall effect and controllable topological phase transition in Janus Fe2SSe
,”
J. Phys. Chem. Lett.
13
,
10297
10304
(
2022
).
38.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
(
1994
).
39.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
5
(
2015
).
40.
V.
Wang
,
N.
Xu
,
J. C.
Liu
,
G.
Tang
, and
W. T.
Geng
, “
VASPKIT: A userfriendly interface facilitating high-throughput computing and analysis using VASP code
,”
Comput. Phys. Commun.
267
,
108033
(
2021
).
41.
R. F. L.
Evans
,
W. J.
Fan
,
P.
Chureemart
,
T. A.
Ostler
,
M. O.
Ellis
, and
R. W.
Chantrell
, “
Atomistic spin model simulations of magnetic nanomaterials
,”
J. Phys.: Condens. Matter
26
,
103202
(
2014
).
42.
H. J.
Kim
, See https://github.com/Infant83/VASPBERRY for “
VASPBERRY
.”
43.
A. A.
Mostofi
,
J. R.
Yates
,
G.
Pizzi
,
Y. S.
Lee
,
I.
Souza
,
D.
Vanderbilt
, and
N.
Marzari
, “
An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions
,”
Comput. Phys. Commun.
185
,
2309
(
2014
).
44.
Q.
Wu
,
S.
Zhang
,
H. F.
Song
,
M.
Troyer
, and
A. A.
Soluyanov
, “
WannierTools: An open-source software package for novel topological materials
,”
Comput. Phys. Commun.
224
,
405
416
(
2018
).
45.
R.
Li
,
J.
Jiang
,
X.
Shi
,
W.
Mi
, and
H.
Bai
, “
Two-dimensional Janus FeXY (X, Y = Cl, Br, and I, X ≠ Y) monolayers: Half-metallic ferromagnets with tunable magnetic properties under strain
,”
ACS Appl. Mater. Interfaces
13
,
38897
38905
(
2021
).
46.
X.
Feng
,
X.
Xu
,
Z.
He
,
R.
Peng
,
Y.
Dai
,
B. B.
Huang
, and
Y. D.
Ma
, “
Valley-related multiple Hall effect in monolayer
,”
Phys. Rev. B
104
,
075421
(
2021
).
47.
Y. Q.
Li
,
X. Y.
Wang
,
S. Y.
Zhu
,
D. S.
Tang
,
Q. W.
He
, and
X. C.
Wang
, “
Enhanced vertical polarization and ultra-lowpolarization switching barriers of two-dimensional SnS/SnSSe ferroelectric heterostructures
,”
J. Mater. Chem. C
10
,
12132
(
2022
).
48.
C. I.
Hiley
,
M. R.
Lees
,
J. M.
Fisher
,
D.
Thompsett
,
S.
Agrestini
,
R. I.
Smith
, and
R. I.
Walton
, “
Ruthenium(V) oxides from low-temperature hydrothermal synthesis
,”
Angew. Chem., Int. Ed.
53
,
4423
(
2014
).
49.
S.
Homkar
,
B.
Chand
,
S. S.
Rajput
,
S.
Gorantla
,
T.
Das
,
R.
Babar
,
S.
Patil
,
R.
Klingeler
,
S.
Nair
,
M.
Kabir
, and
A.
Bajpai
, “
Few-layer SrRu2O6 nanosheets as non-van der Waals honeycomb antiferromagnets: Implications for two-dimensional spintronics
,”
ACS Appl. Nano Mater.
4
,
9313
(
2021
).
50.
K.
Junjiro
, “
Superexchange interaction and symmetry properties of electron orbitals
,”
Phys. Chem. Solids
10
,
87
(
1959
).
51.
H.
Banerjee
and
M.
Aichhorn
, “
Emergence of a ferromagnetic insulating state in LaMnO3/SrTiO3 heterostructures: Role of strong electronic correlations and strain
,”
Phys. Rev. B
101
,
241112
(
2020
).
52.
W.
Ren
,
K.
Jin
,
E. J.
Guo
,
C.
Ge
,
C.
Wang
,
X.
Xu
,
H.
Yao
,
L.
Jiang
, and
G.
Yang
, “
Strain-engineered high-temperature ferromagnetic oxygen-substituted NaMnF3 from first principles
,”
Phys. Rev. B
104
,
174428
(
2021
).
53.
C.
Ma
,
X.
Chen
,
K.
Jin
,
W.
Ren
,
Z.
Zhong
,
C.
Ge
,
E.
Guo
,
X.
Xu
,
Q.
Zhang
, and
C.
Wang
, “
The evolution of band topology in two-dimensional Weyl half-metals
,”
J. Phys. Chem. Lett.
14
,
825
831
(
2023
).
54.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
,
W.
Yao
,
D.
Xiao
,
P.
Jarillo-Herrero
, and
X.
Xu
, “
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,”
Nature
546
,
270
273
(
2017
).
55.
D. J.
Thouless
,
M.
Kohmoto
,
M. P.
Nightingale
, and
M.
den Nijs
, “
Quantized Hall conductance in a two-dimensional periodic potential
,”
Phys. Rev. Lett.
49
,
405
(
1982
).
56.
M.
Kohmoto
, “
Topological invariant and the quantization of the Hall conductance
,”
Ann. Phys.
160
,
343
354
(
1985
).
57.
D.
Xiao
,
M. C.
Chang
, and
Q.
Niu
, “
Berry phase effects on electronic properties
,”
Rev. Mod. Phys.
82
,
1959
(
2010
).
58.
M. C.
Chang
and
Q.
Niu
, “
Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands
,”
Phys. Rev. B
53
,
7010
(
1996
).
59.
Y.
Yao
,
L.
Kleinman
,
A. H.
MacDonald
,
J.
Sinova
,
T.
Jungwirth
,
D. S.
Wang
,
E.
Wang
, and
Q.
Niu
, “
First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe
,”
Phys. Rev. Lett.
92
,
037204
(
2004
).
60.
D.
Vanderbilt
,
Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators
(
Cambridge University Press
,
Cambridge
,
2018
).
61.
Z.
Liu
,
G.
Zhao
,
B.
Liu
,
Z. F.
Wang
,
J.
Yang
, and
F.
Liu
, “
Intrinsic quantum anomalous Hall effect with in-plane magnetization: Searching rule and material prediction
,”
Phys. Rev. Lett.
121
,
246401
(
2018
).
62.
Z.
Wu
,
Y.
Xue
,
Z.
Shen
, and
C.
Song
, “
Topological phase transition and skyrmions in a Janus MnSbBiSe2Te2 monolayer
,”
Phys. Chem. Chem. Phys.
25
,
96
105
(
2023
).
63.
X.
Liu
,
H. C.
Hsu
, and
C. X.
Liu
, “
In-plane magnetization-induced quantum anomalous Hall effect
,”
Phys. Rev. Lett.
111
,
086802
(
2013
).
64.
H.
Huan
,
Y.
Xue
,
B.
Zhao
,
G.
Gao
,
H.
Bao
, and
Z.
Yang
, “
Strain induced half-valley metals and topological phase transitions in MBr2 monolayers (M = Ru, Os)
,”
Phys. Rev. B
104
,
165427
(
2021
).

Supplementary Material

You do not currently have access to this content.