Effective cleaning of tin contamination on the collecting mirrors in extreme ultraviolet source is one of the key techniques to improve throughput and cost performance of extreme ultraviolet lithography. Hydrogen radicals produced in hydrogen plasma that is induced by wideband extreme ultraviolet radiation are expected to be utilized for in situ tin contamination cleaning in extreme ultraviolet sources. In this Letter, we clarified absolute density and cleaning ability of the hydrogen radicals produced by intense extreme ultraviolet pulse through ground state population density measurement by laser-induced fluorescence technique. The experimentally obtained radical parameters coincided well with simulation results and collisional radiative model. It was found that the extreme ultraviolet induced plasma was in quasi-steady state with abundant amount of hydrogen radicals in ground state. Further, it was found that the in situ tin contamination cleaning in extreme ultraviolet lithography source would become more practical with increase in operational parameters, such as extreme ultraviolet emission intensity, gas pressure, and radical production cross section.

1.
V.
Bakshi
,
EUV Lithography
, 2nd ed. (
SPIE Press
,
Bellingham, WA
,
2018
).
2.
K.
Nishihara
,
A.
Sunahara
,
A.
Sasaki
,
M.
Nunami
,
H.
Tanuma
,
S.
Fujioka
,
Y.
Shimada
,
K.
Fujima
,
H.
Furukawa
,
T.
Kato
,
F.
Koike
,
R.
More
,
M.
Murakami
,
T.
Nishikawa
,
V.
Zhakhovskii
,
K.
Gamata
,
A.
Takata
,
H.
Ueda
,
H.
Nishimura
,
Y.
Izawa
,
N.
Miyanaga
, and
K.
Mima
, “
Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography
,”
Phys. Plasmas
15
,
056708
(
2008
).
3.
M.
van Herpen
,
D.
Klunder
,
W.
Soer
,
R.
Moors
, and
V.
Banine
, “
Sn etching with hydrogen radicals to clean EUV optics
,”
Chem. Phys. Lett.
484
,
197
199
(
2010
).
4.
O.
Braginsky
,
A.
Kovalev
,
D.
Lopaev
,
E.
Malykhin
,
T.
Rakhimova
,
A.
Rakhimov
,
A.
Vasilieva
,
S.
Zyryanov
,
K.
Koshelev
,
V.
Krivtsun
et al, “
Removal of amorphous C and Sn on Mo:Si multilayer mirror surface in hydrogen plasma and afterglow
,”
J. Appl. Phys.
111
,
093304
(
2012
).
5.
A.
Dolgov
,
D.
Lopaev
,
T.
Rachimova
,
A.
Kovalev
,
A.
Vasil'Eva
,
C. J.
Lee
,
V.
Krivtsun
,
O.
Yakushev
, and
F.
Bijkerk
, “
Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas
,”
J. Phys. D: Appl. Phys.
47
,
065205
(
2014
).
6.
D. T.
Elg
,
G. A.
Panici
,
S.
Liu
,
G.
Girolami
,
S. N.
Srivastava
, and
D. N.
Ruzic
, “
Removal of tin from extreme ultraviolet collector optics by in-situ hydrogen plasma etching
,”
Plasma Chem. Plasma Process.
38
,
223
245
(
2018
).
7.
D.
Bleiner
and
T.
Lippert
, “
Stopping power of a buffer gas for laser plasma debris mitigation
,”
J. Appl. Phys.
106
,
123301
(
2009
).
8.
T.
Wu
,
X.
Wang
,
H.
Lu
, and
P.
Lu
, “
Debris mitigation power of various buffer gases for CO2 laser produced tin plasmas
,”
J. Phys. D: Appl. Phys.
45
,
475203
(
2012
).
9.
R. M.
van der Horst
,
J.
Beckers
,
E. A.
Osorio
,
D. I.
Astakhov
,
W. J.
Goedheer
,
C. J.
Lee
,
V. V.
Ivanov
,
V. M.
Krivtsum
,
K. N.
Koshelev
,
D. V.
Lopaev
,
F.
Bijkerk
, and
V. Y.
Banine
, “
Exploring the electron density in plasma induced by EUV radiation: I. Experimental study in hydrogen
,”
J. Phys. D: Appl. Phys.
49
,
145203
(
2016
).
10.
J.
Beckers
,
T. H. M.
van de Ven
,
C. A.
de Meijere
,
R. M.
van der Horst
,
M.
van Kampen
, and
V. Y.
Banine
, “
Energy distribution functions for ions from pulsed EUV-induced plasmas in low pressure N2-diluted H2 gas
,”
Appl. Phys. Lett.
114
,
133502
(
2019
).
11.
J.
Beckers
,
F.
Van De Wetering
,
B.
Platier
,
M.
Van Ninhuijs
,
G.
Brussaard
,
V.
Banine
, and
O.
Luiten
, “
Mapping electron dynamics in highly transient EUV photon-induced plasmas: A novel diagnostic approach using multi-mode microwave cavity resonance spectroscopy
,”
J. Phys. D: Appl. Phys.
52
,
034004
(
2019
).
12.
K.
Kouge
,
K.
Tomita
,
J.
Hotta
,
Y.
Pan
,
H.
Tomuro
,
M.
Morita
,
T.
Yanagida
,
K.
Uchino
, and
N.
Yamamoto
, “
Time-resolved spatial profiles of electron density and temperature in hydrogen plasmas induced by radiation from laser-produced tin plasmas for extreme ultraviolet lithography light sources
,”
Jpn. J. Appl. Phys., Part 1
60
,
066002
(
2021
).
13.
M.
van de Kerkhof
,
A. M.
Yakunin
,
D.
Astakhov
,
M.
van Kampen
,
R.
van der Horst
, and
V.
Banine
, “
EUV-induced hydrogen plasma: Pulsed mode operation and confinement in scanner
,”
J. Micro/Nanopatterning Mater. Metrol.
20
,
033801
(
2021
).
14.
C.
Liu
,
N.
Tanaka
,
B.
Zhu
,
K.
Nishihara
,
S.
Fujioka
,
K. S.
Kang
,
Y.
Suh
,
J.-G.
Kim
,
K.
Ozawa
, and
M.
Kubo
, “
Time-resolved measurement of radical populations in extreme-ultraviolet-light-induced hydrogen plasma
,”
Appl. Phys. Express
15
,
036002
(
2022
).
15.
J.
Bittner
,
K.
Kohse-Höinghaus
,
U.
Meier
, and
T.
Just
, “
Quenching of two-photon-excited H (3s, 3d) and O (3p 3P2,1,0) atoms by rare gases and small molecules
,”
Chem. Phys. Lett.
143
,
571
576
(
1988
).
16.
J.
Bittner
,
K.
Kohse-Höinghaus
,
U.
Meier
,
S.
Kelm
, and
T.
Just
, “
Determination of absolute H atom concentrations in low-pressure flames by two-photon laser-excited fluorescence
,”
Combust. Flame
71
,
41
50
(
1988
).
17.
I.
Wysong
and
J.
Pobst
, “
Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1 kW arcjet thruster
,”
Appl. Phys. B: Lasers Opt.
67
,
193
205
(
1998
).
18.
J. T.
Salmon
and
N. M.
Laurendeau
, “
Concentration measurements of atomic hydrogen in subatmospheric premixed C2H4/O2/Ar flat flames
,”
Combust. Flame
74
,
221
231
(
1988
).
19.
M.
Goto
,
K.
Sawada
, and
T.
Fujimoto
, “
Relations between the ionization or recombination flux and the emission radiation for hydrogen and helium in plasma
,”
Phys. Plasmas
9
,
4316
4324
(
2002
).
20.
M.
Goto
and
S.
Morita
, “
Ionization balance in the rotating radiation belt accompanying complete divertor detachment in LHD
,”
Plasma Fusion Res.
3
,
S1042
(
2008
).
21.
H.
Shields
,
S. W.
Fornaca
,
M. B.
Petach
,
M.
Michaelian
,
R. D.
McGregor
,
R. H.
Moyer
, and
R. J. S.
Pierre
, “
Xenon target performance characteristics for laser-produced plasma EUV sources
,”
Proc. SPIE
4688
,
94
101
(
2002
).
22.
S.
Kalmykov
,
P.
Butorin
, and
M.
Sasin
, “
Xe laser-plasma EUV radiation source with a wavelength near 11 nm-optimization and conversion efficiency
,”
J. Appl. Phys.
126
,
103301
(
2019
).
23.
M.
Masuda
,
N.
Tanaka
,
K.
Hane
,
A.
Sunahara
,
S.
Fujioka
, and
H.
Nishimura
, “
Spectroscopic observation of ablation plasma generated with a laser-driven extreme ultraviolet light source
,”
Appl. Phys. B
119
,
421
425
(
2015
).
24.
N.
Tanaka
,
N.
Wada
,
Y.
Kageyama
, and
H.
Nishimura
, “
Mitigation of debris from a laser plasma EUV source and from focusing optics for thin film deposition by intense EUV radiation
,”
High Energy Density Phys.
37
,
100865
(
2020
).
25.
W.
Juchmann
,
J.
Luque
, and
J. B.
Jeffries
, “
Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing DC arcjet
,”
Appl. Opt.
44
,
6644
6652
(
2005
).
26.
A.
Sunahara
,
A.
Sasaki
, and
K.
Nishihara
,
J. Phys.: Conf. Ser.
112
,
042048
(
2008
).
27.
A.
Sunahara
,
A.
Hassanein
,
K.
Tomita
,
S.
Namba
, and
T.
Higashiguchi
,
Opt. Express
31
,
31780
31795
(
2023
).
28.
J. E.
Hernandez
II
,
N.
Tanaka
,
S.
Fujioka
,
K.
Nishihara
,
T.
Johzaki
, and
A.
Sunahara
(
2023
), “STAR2D simulation and hydrogen photodissociation cross sections dataset,”
Zenodo
.
29.
J. E.
Hernandez
,
N.
Tanaka
,
R.
Yamada
,
Y.
Wang
,
K.
Nishihara
,
T.
Johzaki
,
A.
Sunahara
,
K. S.
Kang
,
S.
Ueyama
,
K.
Ozawa
, and
S.
Fujioka
, “
Efficient photo-dissociation-induced production of hydrogen radicals using vacuum ultraviolet light from a laser-produced plasma
,”
Appl. Phys. Lett.
124
,
012101
(
2024
).
30.
A. N.
Heays
,
A. D.
Bosman
, and
E. F.
van Dishoeck
,
Astron. Astrophys.
602
,
A105
(
2017
).
31.
H.
Tanuma
,
H.
Ohashi
,
S.
Fujioka
,
H.
Nishimura
,
A.
Sasaki
, and
K.
Nishihara
, “
4d-4f unresolved transition arrays of xenon and tin ions in charge exchange collisions
,”
J. Phys.: Conf. Ser.
58
,
231
234
(
2007
).
32.
H.
Parchamy
,
J.
Szilagyi
,
M.
Masnavi
, and
M.
Richardson
, “
Ultraviolet out-of-band radiation studies in laser tin plasma sources
,”
J. Appl. Phys.
122
,
173303
(
2017
).
33.
S.
Fujioka
,
H.
Nishimura
,
K.
Nishihara
,
A.
Sasaki
,
A.
Sunahara
,
T.
Okuno
,
N.
Ueda
,
T.
Ando
,
Y.
Tao
,
Y.
Shimada
,
K.
Hashimoto
,
M.
Yamaura
,
K.
Shigemori
,
M.
Nakai
,
K.
Nagai
,
T.
Norimatsu
,
T.
Nishikawa
,
N.
Miyanaga
,
Y.
Izawa
, and
K.
Mima
, “
Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas
,”
Phys. Rev. Lett.
95
,
235004
(
2005
).
34.
H. M.
Smallwood
, “
The rate of recombination of atomic hydrogen
,”
J. Am. Chem. Soc.
51
,
1985
1999
(
1929
).
35.
I.
Amdur
and
A.
Robinson
, “
The recombination of hydrogen atoms. I
,”
J. Am. Chem. Soc.
55
,
1395
1406
(
1933
).
36.
I.
Amdur
, “
Recombination of hydrogen atoms. III
,”
J. Am. Chem. Soc.
60
,
2347
2355
(
1938
).
37.
F.
Palla
,
E. E.
Salpeter
, and
S. W.
Stahler
, “
Primordial star formation—The role of molecular hydrogen
,”
Astrophys. J.
271
,
632
641
(
1983
).
38.
H.
Mizoguchi
,
K. M.
Nowak
,
H.
Nakarai
,
T.
Abe
,
T.
Ohta
,
Y.
Kawasuji
,
H.
Tanaka
,
Y.
Watanabev
,
T.
Hori
,
T.
Kodama
et al, “
Update of EUV source development status for HVM lithography
,”
J. Laser Micro/Nanoeng.
11
,
276
284
(
2016
).

Supplementary Material

You do not currently have access to this content.